Решая уравнение sin²(x)-3*sin(x)+2=0, находим sin(x)=1 либо sin(x)=2. Но так как /sin(x)/≤1, то равенство sin(x)=2 невозможно. Запишем теперь данное неравенство в виде 3*[sin(x)-1]*[sin(x)-2]≥0. Так как sin(x)-2<0 при любом значении x, то неравенство 3*[sin(x)-1]*[sin(x)-2]>0 возможно только при sin(x)-1<0, т.е. при sin(x)<1. А это неравенство верно при любых значениях x, кроме значений x=π/2+2*π*n, где n∈Z. Но так как значение sin(x)=1 тоже удовлетворяет исходному неравенству, то отсюда следует, что оно справедливо при любых значениях x, т.е. при x∈(-∞;∞).
Т.к. у Петра выше, чем у Бориса, то Пётр мог набрать 16, 26 или Сумма Петра и Кирилла делится на 3. Рассмотрим варианты, сколько могли набрать Пётр и Кирилл. 16 + 10 = 26 - не делится на 3 16 + 26 = 42 - делится на 3 16 + 30 = 46 - не делится на 3 26 + 30 = 56 - не делится на 3 10 + 26 = 36 - делится на 3 Остальные варианты повторяют суммарный набор Петра и Кирилла.
1. Петр и Кирилл набрали 16 и Кто сколько неизвестно, но это и не важно. Значит, Борис мог набрать только т.к. их у него должно быть меньше, чем у Петра, а 16 и заняты либо Петром, либо Кириллом. Следовательно, Антон набрал
2. Пётр набрал Кирилл - 10. Пётр не может набрать т.к. у Бориса д.б. меньше. В этом случае у Бориса а у Антона вновь
Т.к. у Петра выше, чем у Бориса, то Пётр мог набрать 16, 26 или Сумма Петра и Кирилла делится на 3. Рассмотрим варианты, сколько могли набрать Пётр и Кирилл. 16 + 10 = 26 - не делится на 3 16 + 26 = 42 - делится на 3 16 + 30 = 46 - не делится на 3 26 + 30 = 56 - не делится на 3 10 + 26 = 36 - делится на 3 Остальные варианты повторяют суммарный набор Петра и Кирилла.
1. Петр и Кирилл набрали 16 и Кто сколько неизвестно, но это и не важно. Значит, Борис мог набрать только т.к. их у него должно быть меньше, чем у Петра, а 16 и заняты либо Петром, либо Кириллом. Следовательно, Антон набрал
2. Пётр набрал Кирилл - 10. Пётр не может набрать т.к. у Бориса д.б. меньше. В этом случае у Бориса а у Антона вновь
ответ: x∈(-∞;∞).
Объяснение:
Решая уравнение sin²(x)-3*sin(x)+2=0, находим sin(x)=1 либо sin(x)=2. Но так как /sin(x)/≤1, то равенство sin(x)=2 невозможно. Запишем теперь данное неравенство в виде 3*[sin(x)-1]*[sin(x)-2]≥0. Так как sin(x)-2<0 при любом значении x, то неравенство 3*[sin(x)-1]*[sin(x)-2]>0 возможно только при sin(x)-1<0, т.е. при sin(x)<1. А это неравенство верно при любых значениях x, кроме значений x=π/2+2*π*n, где n∈Z. Но так как значение sin(x)=1 тоже удовлетворяет исходному неравенству, то отсюда следует, что оно справедливо при любых значениях x, т.е. при x∈(-∞;∞).