Пусть событие А1- встретил черную кошку, Пусть событие А2- встретил злую собаку. Событие А3 не встретил ни кошку ни собаку и событие А4 встретил либо кошку либо собаку. Р(А1UA2) = P(A4)=Р(А1)+Р(А2)-P(A1∩A2)=0,1+0,4-0,04=0,46P(A3)=1-P(A4)=1-0,46=0,54 Пусть событие А1- вызвали на первом уроке, событие А2- вызвали на втором уроке. Событие А3 не вызвали ни на первом ни на втором уроке, А4 вызвали хотя бы на одном из уроков. Р(А1UA2) = P(A4)=Р(А1)+Р(А2)-P(A1∩A2)=0,1+0,3-0,03=0,37Событие А3 противоположно событию А4, P(A3)=1-P(A4)=1-0,37=0,63
График - парабола ветвями вниз (по коэффициенту-1 при х²), Надо рассчитать значения функции при разных значениях аргумента: х -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 у -48 -35 -24 -15 -8 -3 0 1 0 -3 -8 -15 -24 -35 -48, нанести эти точки на графике и соединить линией. График пересекает ось Y, когда x равняется 0: подставляем x=0 в -x^2+6*x-8. Результат: y=-8. Точка: (0, -8) График функции пересекает ось X при y=0, значит нам надо решить уравнение:-x^2+6*x-8 = 0 Решаем это уравнение и его корни будут точками пересечения с X: x=2. Точка: (2, 0)x=4. Точка: (4, 0)Экстремумы функции:Для того, чтобы найти экстремумы, нужно решить уравнение y'=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции:y'=-2*x + 6=0 Решаем это уравнение и его корни будут экстремумами:x=3. Точка: (3, 1)Интервалы возрастания и убывания функции:Найдем интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим на ведет себя функция в экстремумах при малейшем отклонении от экстремума:Минимумов у функции нетуМаксимумы функции в точках:3Возрастает на промежутках: (-oo, 3]Убывает на промежутках: [3, oo)Точки перегибов графика функции:Найдем точки перегибов для функции, для этого надо решить уравнение y''=0 - вторая производная равняется нулю, корни полученного уравнения будут точками перегибов указанного графика функции, + нужно подсчитать пределы y'' при аргументе, стремящемся к точкам неопределенности функции:y''=-2=0 Решаем это уравнение и его корни будут точками, где у графика перегибы: Нет решение уравнения. Вертикальные асимптоты графика функции:Горизонтальную асимптоту найдем с предела данной функции при x->+oo и x->-oo. Соотвествующие пределы находим:lim -x^2+6*x-8, x->+oo = -oo, значит горизонтальной асимптоты справа не существуетlim -x^2+6*x-8, x->-oo = -oo, значит горизонтальной асимптоты слева не существуетНаклонные асимптоты графика функции:Наклонную асимптоту можно найти, подсчитав предел данной функции, деленной на x при x->+oo и x->-oo. Находим пределы:lim -x^2+6*x-8/x, x->+oo = -oo, значит наклонной асимптоты справа не существуетlim -x^2+6*x-8/x, x->-oo = oo, значит наклонной асимптоты слева не существуетЧетность и нечетность функции:Проверим функци четна или нечетна с соотношений f(x)=f(-x) и f(x)=-f(x). Итак, проверяем:-x^2+6*x-8 = -x^2 - 6*x - 8 - Нет-x^2+6*x-8 = -(-x^2 - 6*x - 8) - Нетзначит, функция не является ни четной ни нечетной
Розв'язання завдання додаю