Объяснение:
Сначала найдем целые корни уравнения, они могут быть делителями свободного члена
Делителями свободного члена -8 являются ±1; ±2;±4±8
поочередно подставляя эти числа в уравнение получаем что корнями являются -1 и 2
x⁴-5x³+6x²+4x-8=0
(-1)⁴-5(-1)³+6(-1)²+4(-1)-8=1+5+6-4-8=0
2⁴-5*2³+6*2²+4*2-8=16-40+24+8-8=0
Тогда исходное уравнение представимо в виде
(x+1)(x-2)(x²+px+q)=0
(x²-x-2)(x²+px+q)=0
разделим столбиком исходный многочлен на (x²-x-2) см приложение
получим x²-4x+4
x²-4x+4=(x-2)²
x⁴-5x³+6x²+4x-8=0
(x²-x-2)(x-2)²=0
таким образом рациональные корни
x₁=-1 ; x₂=2; x₃=2; x₄=2
Поскольку сумма квадратов этих корней сложенная с единицей отсутствует в ответах , возможно что автор задачи имел ввиду сумму квадратов корней, сложенную с единицей , без учета кратных корней.
Тогда считаем рациональными корнями -1 и 2
(-1)²+2²+1=1+4+1=6
ответ 6
у=(3х-5) /2
у=1,5х-2,5
прямая строится по точкам , методом подбора ,если х=0, то у=-2,5 и так далее
получается, прямая расположена в 1, 3 и 4 четверти и она возрастает , начинается в 1 положительной четверти, и заканчивается в 3 положительной четверти.
И коэффициент перед х стоит 1,5 , а он положительный.