№11/(1+v2)+1/(v2+v3)+1/(v3+2)=((v3+2)(v2+v3)+(1+v2)(v3+2)+(v3+v2)(1+v2))/((1+v2)(v2+v3)(v3+2))== (v6+3+2v2+2v3+v3+2+v6+2v2+v3+v6+v2+2)/((v2+v3+2+v6)(v3+2))==(3v6+5v2+4v3+7)/(v6+2v2+3+2v3+2v3+4+3v2+2v6)==(3v6+5v2+4v3+7)/(3v6+5v2+4v3+7)=11/(2-v3)-1/(v3-v2)+1/(v2-1)=((v2-1)(v3--v3)(v2-1)+(2-v3)(v3-v2))/((2-v3)(v3-v2)(v2-1))=(v6-2-v3+v2-2v2+2+v6-v3+2v3-2v2-3+v6)/((2v3-2v2-3+v6)(v2-1))==(3v6-3v2-3)/(2v6-2v3-4+2v2-3v2+3+2v3-v6))=3(v6-v2-1)/(v6-v2-1)=3#2я понял запись так : v(7+4v3+v7+4v3)=v(7+v7+8v3)v(8+2v7-v8-2v7)=v(8-v8)
= 5*2*2 - 2√2 + 5√2 - 1 - 3√2 = 20 - 1 = 19
2.(√(x-4) - a^2 + 9)(x^2 - 3x - 70) = 0
Произведение равно 0, когда любой из множителей равен 0.
Начнем со второй скобки
x^2 - 3x - 70 = 0
D = 9 - 4(-70) = 9 + 280 = 289 = 17^2
x1 = (3 - 17)/2 = (-14)/2 = -7; x2 = (3 + 17)/2 = 20/2 = 10
При любом а в первой скобке будет два корня во второй скобке.
ответ: ни при каком а не будет 1 корня, всегда 2, 3 или 4.
3. Квадратное уравнение имеет более 2 корней, если это тождество.
Это значит, что все три коэффициента: при x^2, при x и число, равны 0.
{ 2a^2 - 3a - 2 = 0
{ a^3 - 4a = 0
{ 3a^2 + a - 14 = 0
Решаем эти уравнения
{ (a - 2)(2a + 1) = 0
{ a(a^2 - 4) = a(a - 2)(a + 2) = 0
{ (a - 2)(3a + 7) = 0
При а = 2 все три коэффициента обращаются в 0. Получается
0x^2 + 0x + 0 = 0
Это тождество верно при любом х.
ответ: а = 2
4. Я не понял задания. В 1 скобке что в знаменателе? y или y-1 ?
Во 2 скобке что в числителе? 2y-7 или 7? И что в знаменателе?
Справа тоже непонятно, что в знаменателе.
Расставь скобки по-нормальному!