Всего 38 звонков
Объяснение:
Всего 20 человек, у каждого 1 личная новость.
Очевидно, что 1й звонок распространит 1 новость. Следовательно, у кого-то их станет 2 (рассказанная и своя).
Поедлагаю такой алгоритм:
Для того, чтобы все 20 новостей стали известны кому-то одному, нужно
20 - 1 = 19 звонков.
(19 звонков - потому что надо передать всего 19 новостей; одна "своя" новость в счет звонков не войдет).
Однако после 19 звонков все новости полностью известны только одному человеку. А значит, 19ти - неизвестны.
Этт значит, что необходимо совершить ещё 19 звонков (т.к. 1 звонок "обогащает" новостями только 1го человека).
Итого, всего звонков необходимо:
19 + 19 = 38
Где первые 19 звонков - "накопительная" фаза, а последующие 19 - "распространяющая" фаза.
Неполные квадратные уравнения, к которых коэффициент c=0, то есть уравнение имеет вид ax²+bx=0.
Такие уравнения решаются разложением левой части уравнения на множители.
\[a{x^2} + bx = 0\]
Общий множитель x выносим за скобки:
\[x \cdot (ax + b) = 0\]
Это уравнение — типа «произведение равно нулю«. Произведение равно нулю, если хотя бы один из множителей равен нулю. Приравниваем к нулю каждый из множителей:
\[x = 0;ax + b = 0\]
Второе уравнение — линейное. Решаем его:
\[ax = - b\_\_\_\left| {:a} \right.\]
\[x = - \frac{b}{a}\]
Таким образом, неполное квадратное уравнение вида ax²+bx=0 имеет 2 корня,один из которых равен нулю, а второй — -b/a.
Примеры.
\[1){x^2} + 18x = 0\]
Общий множитель x выносим за скобки:
\[x \cdot (x + 18) = 0\]
ДОЛЖНО БЫТЬ ПРАВИЛЬНО
Теперь вспоминаем определение производной в точке
Итак, производная равна:
Или, если принять во внимание, что
То есть это правило выполняется для любого
из области определения функции, следовательно,