вероятность.
2. 10!
3. 26%
4. 1) 5/8 (от 6 до 9)
2) 1/36 (на грани первого — шесть, второго — пять)
3) 35/36 (хотя бы на одной грани не 6)
5. Нету количества троечников, поэтому задача нерешаема.
Объяснение:
1) После того, как нашли количество выбрать три согласных и количество выбрать одну гласную, умножаем первое на второе.
Чтобы найти вероятность составления слова "тест", сначала найдём количество комбинаций 6-и элементов по три и 5-ти элементов по 1. Далее находим вероятность найти определённую комбинацию 6-ти элементов по три и 5-ти по 1. Умножаем числа, что получили.
3) От "больше восьми" вычисляем "больше десяти" и получаем то, что искали.
4) 1) Рисуем квадрат с 36-ю квадратиками-исходами, внутри которых пишем количество очков на кубиках. Находим количество благоприятных исходов.
2) Правило умножения: P(A,B)=P(A)×P(B)=1/6*1/6=1/36
3) Условие будет не выполняться только тогда, когда на обоих кубиках будет 6. Вероятность этого — 1/36. Значит, вероятность выполнения условия — 1-1/36=35/36.
у= (-1/3)·x+7
Объяснение:
1) По условию график искомой линейной функции параллелен к функции у= (-1/3)·x+8 и поэтому угловой коэффициент равен к (-1/3). Тогда формула искомой линейной функции имеет вид
у= (-1/3)·x+b, b - пока неизвестно.
2) График искомой линейной функции проходит через точку А(6;5). Если график функции проходит через некоторую точку, то координаты этой точки должны удовлетворить уравнение функции. Поэтому подставляем координаты точки А в уравнение функции и находим b:
5 = (-1/3)·6 + b
5 = - 2 + b
b = 7.
Уравнение искомой функции: у= (-1/3)·x+7.
1 и -2.5
Д=3²+4*2*5=49=7²>0
х=-3±7/2*2
х1=1
х2=-5/2=-2.5