По определению,
Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение
2)
А значит, если взять (*),
. И правда:
(*) Очевидно, что для любого допустимого значения выражение
определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)
А это и означает, что предел данной последовательности равен 0
4)
А значит, если взять (**),
. И правда:
(**) Очевидно, что для любого допустимого значения выражение
определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)
А это и означает, что предел данной последовательности равен 0
___________________________
2) a=1. Тогда
4)
___________________________
Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x.
вторая степень
Объяснение:
Нам нужно привести многочлен к стандартному виду, а затем указать степень многочлена: а) 3/4a^2 + 3a - a.
Чтобы привести многочлен к стандартному виду сгруппируем и приведем подобные слагаемые.
Подобными называются слагаемые содержащие одинаковую буквенную часть. У нас подобными являются 3a и -a.
Сгруппируем их и приведем.
3/4a^2 + 3a - a = 3/4a^2 + a(3 - 1) = 3/4a^2 + 2a.
Нам осталось указать степень многочлена.
Степень одночлена называется наибольшая степень одночлена, который входит в многочлен.
В нашем многочлене это вторая степень