Рассмотрим первое условие. Обозначим весь путь АВ = 2S , время второго поезда до встречи на половине АВ через t час, тогда время первого ( t+2) час. S/t - скорость второго поезда, S/(t+2)- скорость первого.
Рассмотрим второе условие: 2· S/t - путь пройденный вторым за 2 часа, 2· S/(t+2) - путь, пройденный первым за два часа. По второму условию через два часа расстояние будет равно 1/4 от 2S. Сумма этих трех расстояний равна АВ=2· S
Составляем уравнение:
2· S/t + 2 · S/(t+2) + 2S/4= 2S На S можно сократить, получим уравнение относительно переменной t:
3t²-2t-8=0 D=(-2)²-4·3(-8)=100 t=(2+10)/6=2 второй корень отрицательный.
За два часа второй поезд проходит половину пути, а первый идет на 2 часа больше, то есть 4 часа. Весь путь ( в два раза больштй) второй поезд пройдет за 4 часа, а второй поезд за 8 часов.
1) 3x + 2 > 1 для всех натуральных чисел - верно. 2) x^2 - 3x + 1 < 0 - да, решением является отрезок без концов (x1;x2) 3) Расстояние от точки A(x; y) до начала координат равно √(x^2 + y^2) √(7^2 + 1^2) = √(49 + 1) = √50; √(5^2 + 5^2) = √(25 + 25) = √50. Да, расстояние одинаковое. 4) Да, верно. Если произведение отрицательно, то эти числа разного знака. 5) Да, это верно. 6) Не знаю. 7) Да, это верно. Сумма углов трех треугольников 3*180° = 540° Сумма углов пятиугольника 5*180° - 2*180° = 3*180° = 540° 8) Нет, неверно. Диагонали - оси только у квадрата и ромба. 9) Площадь тр-ника S = 1/2*x*y*sin (x,y) = 1/2*2a*2b*sin (2a,2b) = a*b Отсюда sin (2a,2b) = 1/2. Да, угол между сторонами 2a и 2b равен 30°. 10) Не знаю. 11) (3+5+11)/3 = 19/3 < 7 - нет, неверно. 12) 1 < 1*√2; 2 > 1*√2 - да, верно. 13) Среднее геометрическое чисел 3 и а √(3a) < 5; 3a < 25; a < 25/3; a < 8 1/3 - нет, неверно. Числа [8; 8 1/3) тоже. 14) 0,1a + 0,3*3a = 0,1a + 0,9a = a = 0,25*4a - да, верно. 15) Да, верно. Четное число может кончаться на 2 или на 4. 142, 412, 152, 512, 172, 712, 452, 542, 472, 742, 572, 752, 124, 214, 154, 514, 174, 714, 254, 524, 274, 724, 574, 754. 16) Четные делители 1000: 2, 4, 8, 10, 20, 40, 50, 100, 200, 250, 500, 1000. Да, их ровно 12. 17) Нет, такое число будет иметь сумму цифр 3, то есть делиться на 3. 18) Кубы могут кончаться на 0, 1, 8, 7, 4, 5, 6, 3, 2, 9. Квадраты могут кончаться на 0, 1, 4, 9, 6, 5, 6, 9, 4, 1. Разность куба и квадрата одного и того же числа может кончаться на: 0, 0, 4, 8, 8, 0, 0, 4, 8, 8. Да, на 1 разность не может кончаться.
Обозначим весь путь АВ = 2S , время второго поезда до встречи на половине АВ через t час, тогда время первого ( t+2) час.
S/t - скорость второго поезда, S/(t+2)- скорость первого.
Рассмотрим второе условие:
2· S/t - путь пройденный вторым за 2 часа, 2· S/(t+2) - путь, пройденный первым за два часа. По второму условию через два часа расстояние будет равно 1/4 от 2S.
Сумма этих трех расстояний равна АВ=2· S
Составляем уравнение:
2· S/t + 2 · S/(t+2) + 2S/4= 2S
На S можно сократить, получим уравнение относительно переменной t:
3t²-2t-8=0
D=(-2)²-4·3(-8)=100
t=(2+10)/6=2 второй корень отрицательный.
За два часа второй поезд проходит половину пути, а первый идет на 2 часа больше, то есть 4 часа. Весь путь ( в два раза больштй) второй поезд пройдет за 4 часа, а второй поезд за 8 часов.