Итак, дано уравнение
Это уравнение высокого порядка, следовательно, каких-то методов решения в общем виде особо и нет. Поэтому надо что-то придумывать.
Из следствия теоремы Безу, если у такого уравнения, как наше, есть целые корни, то это делители свободного члена.
Сумма коэффициентов не равна 0, значит, х=1 - не корень.
Суммы коэффициентов при четных и нечетных степенях не равны, поэтому х=-1 - не корень. Подставив 2 и -2 в исходное уравнение, убеждаемся, что равенство не выполняется, а значит, у нашего уравнения нет целых корней. Что можно сделать в таком случае?
Как вообще можно получить многочлен четвертой степени? Можно, например, перемножить два квадратных трехчлена. Учитывая, что коэффициент при старшей степени равен 9, попробуем в каждой скобке при квадрате поставить 3 (3*3=9). Тогда получим
Вообще я сейчас применяю метод неопределенных коэффициентов. Раскрыв скобки, мы получим большое выражение, взяв коэффициенты из нашего исходного выражения мы получим систему, решив которую получим коэффициенты нужного нам разложения.
Думаю, понятно, откуда система возьмется. Просто при каждой степени приравниваем буквенное выражение к коэффициенту из нашего исходного многочлена. Так как эти условия должны выполняться одновременно, то это будет именно система, а не совокупность.
Итак, есть система
Решить её полностью будет сложно, нам нужно хотя бы 1 решение.
Попробуем его подобрать, причем постараемся взять как можно больше целых чисел. a=0, c=2 и a=2, c=0 не подойдут, так как тогда по второму уравнение сумма b и d равна -14/3, но решая 3-е и 4-е уравнения, там одно число будет целым, а у второго знаменатель 2, так что не выполняется. Попробуем взять
Подставляем в 3-е и 4-е уравнения
Квадратное уравнение в числителе легко решается, так как там сумма коэффициентов равна 0, то есть
К сожалению, взять не получится, так как тогда все коэффициенты целые, а значит, второе уравнение автоматически не выполнится.
Значит, получаем
Проверим эти значения на 2-м уравнении.
Верно, то есть мы получили те самые коэффициенты разложения
То есть
Решаем каждое уравнение:
В принципе, упорядочивать корни необязательно, так что так и оставим.
знаки тригонометрических функций по четвертям:
tg ; ctg II I
- +
+ -
III IV
tg 189* двигаемся против часой стрелке на 189*, попадаем в III четверть, смотрим знак, видим +, но нам по заданию нужен противоположный, -tg189* <0 (минус)
tg 269* двигаемся от 0 против часовой стрелке на 269*, попадаем в III четверть, смотрим знак, видим +, tg269* >0
-tg 269* <0
отрицательное число ещё уменьшаем, получаем:
-tg189° - tg269° < 0 (знак минус)
Дана функция у = (х-1)²/x².
1.Область определения функции. D ∈ R : x ≈ 0.
2. Нули функции. Точки пересечения графика функции с осью ОХ.
График функции пересекает ось X при f = 0.
Значит, надо решить уравнение (х-1)²/x² = 0.
Решаем это уравнение (достаточно приравнять нулю числитель):
(х-1)² = 0, х-1 = 0, х = 1.
Точки пересечения с осью X: (1; 0).
График пересекает ось Y, когда x равняется 0.
Подставляем x = 0 в (x - 1)²/x².
Результат: (0 - 1)²/0² невыполним, значит, график не пересекает ось Оу.
3. Промежутки знакопостоянства функции.
Так как переменная в числителе и знаменателе в квадрате, то функция на всей числовой оси только положительна.
4. Симметрия графика (чётность или нечётность функции).
f(-x) = ((-x) - 1)²/((-x)²) = (x + 1)²/x² ≠ f(x) ≠ -f(-x).
Поэтому функция не чётная и не нечётная.
5. Периодичность графика. Не периодична.
6.Точки разрыва, поведение функции в окрестностях точек разрыва, вертикальные асимптоты - смотри приложение.
7. Интервалы монотонности функции, точки экстремумов, значения функции в точках экстремумов.
Первая производная: y' = (1/x²)*(2x - 2) - (2/x³)*(x - 1)²
или y' = (2x - 2)/x³.
Находим нули функции. Для этого приравниваем производную к нулю
(достаточно числитель): 2x-2 = 0
Откуда: x1 = 2/2 = 1.
(-∞ ;0) (0; 1) (1; +∞)
f'(x) > 0 f'(x) < 0 f'(x) > 0
функция возрастает функция убывает функция возрастает.
В окрестности точки x = 1 производная функции меняет знак с (-) на (+). Следовательно, точка x = 1 - точка минимума.
8. Интервалы выпуклости, точки перегиба.
Найдем точки перегибов, для этого надо решить уравнение
\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0.
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
\frac{d^{2}}{d x^{2}} f{\left (x \right )} =
Вторая производная
\frac{1}{x^{2}} \left(2 - \frac{1}{x} \left(8 x - 8\right) + \frac{6}{x^{2}} \left(x - 1\right)^{2}\right) = 0
Решаем это уравнение
Корни этого ур-ния
x_{1} = \frac{3}{2}
Также нужно подсчитать пределы y'' для аргументов, стремящихся к точкам неопределённости функции:
Точки, где есть неопределённость:
x_{1} = 0.
\lim_{x \to 0^-}\left(\frac{1}{x^{2}} \left(2 - \frac{1}{x} \left(8 x - 8\right) + \frac{6}{x^{2}} \left(x - 1\right)^{2}\right)\right) = \infty.
\lim_{x \to 0^+}\left(\frac{1}{x^{2}} \left(2 - \frac{1}{x} \left(8 x - 8\right) + \frac{6}{x^{2}} \left(x - 1\right)^{2}\right)\right) = \infty.
- пределы равны, значит, пропускаем соответствующую точку.
Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках
(-oo, 3/2]
Выпуклая на промежутках
[3/2, oo)
9. Поведение функции в бесконечности. Наклонные (в частности, горизонтальные) асимптоты - смотри приложение.
10. Дополнительные точки, позволяющие более точно построить график - даны в приложении.
11. Построение графика функции по проведенному исследованию дан в приложении.
Воспользовался Схемой Горнера