условие безобразно оформлено, пришлось как-то догадываться, что имелось ввиду, так что, если я решил не те примеры, что вы ждали - ваша вина, надо понятно оформлять.
Это устные упражнения на тему (a^3 + b^3)/(a^2 - a*b + b^2) = (a + b); (ну, конечно, и сумма и разность кубов сюда укладываются, для отрицательных чисел целые степени определены.)
в случае А) a = 1/2000 b = - 1/1999 (ну, в смысле число в минус первой степени);
ответ 1/2000 - 1/1999 = - 1/(1999*2000) = - 1/3998000;
Б) a = 1/1222 b = 1/777,
ответ 1/1222 + 1/777 = 1999/949494; может это и можно сократить, но ...
а) Первые 4 члена последовательности.
y(1) = (3*1+10)/(3-4*1) = (3+10)/(3-4) = 13/(-1) = -13
y(2) = (3*2+10)/(3-4*2) = (6+10)/(3-8) = 16/(-5) = -3,2
y(3) = (3*3+10)/(3-4*3) = (9+10)/(3-12) = -19/9
y(4) = (3*4+10)/(3-4*4) = (12+10)/(3-16) = -22/13
б) Чтобы найти, начиная с какого числа все члены последовательности будут больше -1, нужно составить неравенство.
(3n + 10)/(3 - 4n) > -1
(3n + 10)/(3 - 4n) + 1 > 0
(3n + 10 + 3 - 4n)/(3 - 4n) > 0
(13 - n)/(3 - 4n) > 0
Поменяем знаки в числителе и в знаменателе одновременно, дробь от этого не изменится.
(n - 13)/(4n - 3) > 0
По методу интервалов
n ∈ (-oo; 3/4) U (13; +oo)
Так как 13 не входит в промежуток, то
ОТВЕТ: Начиная с n = 14
ответ: \frac{4x^4-4x^3+x^2}{-2x^2+5x-2}+ \frac{2x^3-7x^2+5x+1}{x-2}\leqslant0
ОДЗ:
-2x^2+5x-2\neq0\\ 2x^2-5x+2\neq0\\ D=25-16=9; \sqrt {D}=3 x_{1/2}\neq0 x_1\neq \frac{1}{2}; \ \ x_2\neq2
-2x^2+5x-2=-(x-2)(2x-1)=(2-x)(2x-1)
\frac{x^2(4x^2-4x+1)}{(2-x)(2x-1)}+ \frac{2x^3-7x^2+5x+1}{x-2}\leqslant0 \frac{x^2(2x-1)^2}{(2-x)(2x-1)}+ \frac{2x^3-7x^2+5x+1}{x-2}\leqslant0 \frac{2x^3-7x^2+5x+1}{x-2}- \frac{x^2(2x-1)}{x-2}\leqslant0 \frac{2x^3-7x^2+5x+1-2x^3+x^2}{x-2}\leqslant0 -6x^2+5x+1\leqslant0 6x^2-5x+1=0\\ D=25+24=49; \ \sqrt D=7 x_{1/2}= \frac{5\pm7}{12} x_1=- \frac{1}{6};\ \ x_2=1
__+__- \frac{1}{6} __-__ \frac{1}{2} __-__1__+__2__-__
ответ: x\in [- \frac{1}{6}; \frac{1}{2})\bigcup (\frac{1 }{2};1]\bigcup(2;+\infty)
Объяснение: