М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Nikalusha
Nikalusha
24.10.2022 15:07 •  Алгебра

Постройте график функции:
1) у = х + 4
2) у = х – 2
4) у = - 3 - х; 5) y = 0,6х – 1
3) y = 7 – х
6) y = 3 + 2,5х
7) у = х + 9
8) y = 6 - с​

👇
Ответ:
reginа111222333
reginа111222333
24.10.2022
Все графики подписаны, надеюсь все понятно
Постройте график функции: 1) у = х + 42) у = х – 24) у = - 3 - х; 5) y = 0,6х – 13) y = 7 – х6) y =
4,7(88 оценок)
Ответ:
2005jan05
2005jan05
24.10.2022

Листай

Больше графиков не вмещается из-за ограничений по картинкам


Постройте график функции: 1) у = х + 42) у = х – 24) у = - 3 - х; 5) y = 0,6х – 13) y = 7 – х6) y =
Постройте график функции: 1) у = х + 42) у = х – 24) у = - 3 - х; 5) y = 0,6х – 13) y = 7 – х6) y =
Постройте график функции: 1) у = х + 42) у = х – 24) у = - 3 - х; 5) y = 0,6х – 13) y = 7 – х6) y =
Постройте график функции: 1) у = х + 42) у = х – 24) у = - 3 - х; 5) y = 0,6х – 13) y = 7 – х6) y =
Постройте график функции: 1) у = х + 42) у = х – 24) у = - 3 - х; 5) y = 0,6х – 13) y = 7 – х6) y =
4,7(89 оценок)
Открыть все ответы
Ответ:
oksakuvp01cde
oksakuvp01cde
24.10.2022
0,2(3)=\frac{23-2}{90}= \frac{21}{90}=\frac{7}{30}.
0,2(6)= \frac{26-2}{90}= \frac{24}{90}=\frac{4}{15}

Как перевести периодическую дробь в обыкновенную:
1) Считаем количество цифр в периоде десятичной дроби. Обозначаем количество цифр за букву k. У нас k=1.
2) Считаем количество цифр, стоящих после запятой, но до периода десятичной дроби. Обозначаем количество цифр за букву m. У нас m=1.
3) Записываем все цифры после запятой (включая цифры из периода) в виде натурального числа. Обозначаем полученное число буквой a. У нас а=23.
4) Теперь записываем все цифры, стоящие после запятой, но до периода, в виде натурального числа. Обозначаем полученное число буквой b. У нас b=2.
5) Подставляем найденные значения в формулу Y+ \frac{a-b}{99...9000..0}, где Y — целая часть бесконечной периодической дроби (у нас Y=0), количество девяток равно k, количество нулей равно m.

Вычислим примеры:
1) 0,2(3)-0,1=\frac{7}{30}-\frac{1}{10}=\frac{7-3}{30}=\frac{4}{30}=\frac{2}{15}=0,1(3)
2) 9\frac{11}{15}-\frac{4}{15}=\frac{146}{15}-\frac{4}{15}=\frac{131}{15}=8,7(3)
4,4(40 оценок)
Ответ:
ctalin123123
ctalin123123
24.10.2022
Среднеарифметическое двух чисел всегда меньше большого числа на столько же, насколько оно больше меньшего числа. Ну например для чисел 17 и 25 – среднеарифметическое равно     21 = \frac{ 17 + 25 }{2} \ ,     и при этом 21 на 4 меньше двадцати пяти и на 4 больше семнадцати.

Когда Вася отдаёт Пете 6 монет и у них становится поровну, то они как раз и приходят к среднеарифметическому их начальных количеств монет. В итоге у Васи оказывается на 6 монет меньше изначального, а у Пети на 6 монет больше изначального. А значит, вначале у Васи было на 12 = 6 + 6 монет больше, чем у Пети.

Путь у Васи вначале x монет. Тогда у Пети x - 12 монет.

В первом случае всё как раз получается правильно:

x - 6 = ( x - 12 ) + 6 \ ;

Во втором случае у Васи-II оказывается x + 9 монет, а у Пети-II будет x - 12 - 9 монет. При этом у Пети-II монет в K раз меньше, т.е. если мы количество монет Пети-II мысленно увеличим в K раз, то их станет столько же, сколько и у Васи-II. На этом основании составим уравнение:

x + 9 = ( x - 12 - 9 ) K \ ;

x + 9 = ( x - 21 ) K \ ;

Далее это целочисленное уравнение можно решить двумя

[[[ 1-ый

K = \frac{ x + 9 }{ x - 21 } = \frac{ x - 21 + 21 + 9 }{ x - 21 } = \frac{ x - 21 + 30 }{ x - 21 } = \frac{ x - 21 }{ x - 21 } + \frac{30}{ x - 21 } = 1 + \frac{30}{ x - 21 } \ ;

K = 1 + \frac{30}{ x - 21 } \ ;

Чтобы K было целым, целой должен быть и результат деления в дроби, а чтобы K было максимальным, частное от деления в дроби должно быть максимальным, а значит её знаменатель должен быть минимальным, целым, положительным числом, что возможно только, когда     x - 21 = 1 \ ,     откуда:

x = 22 \ ; K = 31 \ ;

[[[ 2-ой

x + 9 = K x - 21 K \ ;

9 + 21 K = ( K - 1 ) x \ ;

x = \frac{ 9 + 21 K }{ K - 1 } = \frac{ 9 + 21 ( K - 1 + 1 ) }{ K - 1 } \ = \frac{ 9 + 21 ( K - 1 ) + 21 }{ K - 1 } = \frac{ 30 + 21 ( K - 1 ) }{ K - 1 } = \\\\ = \frac{30}{ K - 1 } + \frac{ 21 ( K - 1 ) }{ K - 1 } = \frac{30}{ K - 1 } + 21 \ ;

x = \frac{30}{ K - 1 } + 21 \ ;

Чтобы x было целым, целой должен быть и результат деления в дроби. А максимальное значение знаменателя в такой дроби (при том, что частное от деления остаётся целым) составляет K - 1 = 30 \ , откуда:

K = 31 \ ; x = 22 \ ;

О т в е т : K = 31 \ .
4,6(60 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ