х - запланированная скорость
1620/х (время за которое должен был проехать) = (4*1620)/(9*х)+2+(5*1620)/((х+5)*9)
1620/х = 720/х+2+900/(х+5)
810/х=360/х+1+450/(х+5)
450/х=1+450/(х+5)
450(х+5)=х(х+5)+450х
450х+2250=х²+5х+450х
х²+5х-2250
дискриминант = 25+4*2250=95²
х1=-50 - не подходит
х2=45 км/ч - первоначальная скорость. тогда скорость после задержки х+5=50км/ч
2.
пусть скорость течения- х км/ч, тогда
v(км/ч) t(ч) s(км)
плот х 72/х
72
пароход (х+20) 72/(х+20)
зная, что разность времени движения составила 15 ч, составим уравнение по времени
72x+1440-72x=15x² +300x
-15x²-300x+1440=0 |: 15
-x²-20x+96=0
d=400+4*96=784
x₁=(20+28)/-2 = -24 (не удовлетворяет условию)
х₂=(20-28)/-2= 4
ответ: скорость течения 4 км/ч
Для того, чтобы найти точки пересечения прямых у = 3 - х и у = 2х, нужно приравнять правые части и решить уравнение относительно переменной х.
Следовательно получим:
3 - х = 2х (перенесем переменную х из левой части в правую, поменяв знак на противоположный);
3 = 2х + х;
3 = х * (2 + 1);
3 = х * 3 (для того, чтобы найти неизвестный множитель, нужно произведение разделить на известный множитель);
х = 3 : 3;
х = 1.
Тогда у = 3 - 1 = 2.
Следовательно точка пересечения прямых у = 3 - х и у = 2х имеет координаты: (1; 2).
ответ: (1; 2).
Объяснение:
раскрываем скобки будет
лог6-4хбольше лог2х
так как логарифмы равны то основания тоже, то остается росто
6-4хбольше 2х
6больше6х (делим на 6)
х меньше 1