Пусть за х дней может закончить Катя, тогда еѐ производительность равна / х . А за у дней может закончить Алиса, тогда еѐ производительность равна / у . Т.к. они могут напечатать курсовую работу за 6 дней, то /х + /у = 1/ Если сначала % = / части курсовой напечатает Катя, а затем завершит работу Алиса, то Алисе остается % = / части курсовой. Вся курсовая работа будет выполнена за 12 дней т.е. ( /) х + (/ ) у = . Решим систему: /х + /у = / , (/) х + (/ ) у = .
+ = , + = ;
у = − , ; + * ( − , ) = *( − , )
у = − , ; , ² − + = ;
у = − , ; ² − + = ;
² − + = ; = , у = или = , у = . - не подходит, т.к. Катя печатает быстрее, чем Алиса. Значит, Катя может напечатать курсовую работу за 10 дней. ответ. за 10 дней
Для этого надо построить графики функций, из которых состоит система, в одной системе координат, точки пересечения этих графиков будут решениями системы. 1) график - прямая линия, для построения нужны 2 точки. x=0; y=6,5; (0;6,5) y=0; x=2,6 (2,6;0) строим график(см. вложение, красным цветом) 2) график - прямая линия, для построения нужны 2 точки. x=0; y=-3; (0;-3) y=0; x=1,5; (1,5;0) строим график(см. вложение,синим цветом) как видно из графика, прямые пересекаются в одной точке => данная система имеет только одно решение
Пусть за х дней может закончить Катя, тогда еѐ производительность равна / х .
А за у дней может закончить Алиса, тогда еѐ производительность равна / у .
Т.к. они могут напечатать курсовую работу за 6 дней,
то /х + /у = 1/
Если сначала % = / части курсовой напечатает Катя,
а затем завершит работу Алиса, то Алисе остается
% = / части курсовой.
Вся курсовая работа будет выполнена за 12 дней т.е.
( /) х + (/ ) у = .
Решим систему:
/х + /у = / ,
(/) х + (/ ) у = .
+ = ,
+ = ;
у = − , ;
+ * ( − , ) = *( − , )
у = − , ;
, ² − + = ;
у = − , ;
² − + = ;
² − + = ;
= , у =
или = , у = . - не подходит, т.к. Катя печатает быстрее, чем Алиса.
Значит, Катя может напечатать курсовую работу за 10 дней.
ответ. за 10 дней