У=-5х²+6х 1) график парабола, ветви вниз, значит наибольшее значение достигается в вершине параболы, а наименьшего значения не существует. Найдём вершину данной параболы х(в)=-6 / -10 = 0,6 у(в) = -5*0,36+6*0,6 =-1,8+3,6=1,8 Значит, максимальное значение у(0,6)=1,8 минимальное значение у(-∞)=-∞. 2) у=-2х²+5х+3, у(х)=-4 -2х²+5х+3=-4 -2х²+5х+7=0 Д=25+56=81=9² х(1)=(-5+9)/-4= -1 х(2)=(-5-9)/-4= -3,5 => y(-1)=-4 и y(-3.5)=-4
Обозначим cлагаемые за Х,У,Z
(X+Y+Z)/3>=1
Согласно неравенству о среднем арифметическом и среднем геометрическом достаточно доказать :
ХУZ>=1
Вернемся к исходным обозначениям
8abc>=(a+b)(b+c)(a+c)
Снова согласно неравенству о среднем арифметическом и среднем геометрическом видим
a+b>=2sqrt(ab) b+c>=2sqrt(сb) (a+c)>=2sqrt(ac)
поэтому можим заменить сомножители справа на произведение
2sqrt(ab)*2sqrt(aс)*2sqrt(сb)=8abc, что и доказывает неравенство.
Равенство достигается только при а=с=b