Положим в банк 8 рублей
Через год сумма на счету увеличится ровно в p раз и станет равной (8p) рублей.
Поделим её на 4 части, заберем (2p) рублей, оставим в банке (6p) рублей.
Известно, что к концу следующего года в банке оказалось 8·1,44 = 11,52 рубля.
k=11,52/6p=1,92/p
Нашли второй повышающий коэффициент k банка.
p*k=p*1,92/p=1,92
Из условия следует, что второй коэффициент на 0,4 больше первого.
p*(p+0,4)=1,92
P2+0,4p-1,92=0
D=0,16+7,68=7,84
P1=(-0,4-2,8)/2=-1,6 не удов усл
P2=(-0,4+2,8)/2=1,2
k=1,2+0,4=1,6
В 1,2 раза увеличилась сумма вклада первый раз, в 1,6 раз - во второй раз.
Было 100%, стало 160%. Новый процент годовых равен 160%-100% = 60%.
ответ: 60%
2x^2+9x-5=0
D=b^2-4ac=9^2-4*2(-5)=81+40=121 -корень-11
x1,2= -b+\-корень из D / 2a= -9+\-11 / 4= -5 ; 0,5
(х+3)(5х-3)=05x^2+12x-9=0
D=k^2-ac=6^2-5*(-9)=36+45=81 -корень-9
x1,2= -k+\-корень из D / a= -6+\-9 / 5= -3 ; 0,6
(4у-3)(5-8у) =0-32y^2+44y-15=0 | *(-1) __ 32y^2-44y+15=0
D=k^2-ac=(-22)^2-32*15=484-480=4 -корень-2
x1,2= -k+\-корень из D / a= 22+\-2 / 32= 0,625 ; 0,75
(6а+5)(а-8)=06a^2-43a-40=0
D=b^2-4ac=(-43)^2-4*6(-40)=1849+960=2809 -корень-53
x1,2= -b+\-корень из D / 2a=43+\-53 / 12= -5\6 ; 8