y = 3Cosx + 2Sin²x - 1
Найдём производную :
y' = (Cosx)' + 2(Sin²x)' - 1' = - 3Sinx + 4SinxCosx
Приравняем производную к нулю :
- 3Sinx + 4SinxCosx = 0
Sinx(- 3 + 4Cosx) = 0
Sinx = 0
- 3 + 4Cosx = 0
Cosx = 0,75
Если Sinx = 0 , то Cosx = ± 1
1) Sinx = 0 ⇒ Cosx = - 1 ⇒
y = 3 * (- 1) + 2 * 0 - 1 = - 4 - наименьшее
2) Sinx = 0 ⇒ Cosx = 1 ⇒
y = 3 * 1 + 2 * 0 - 1 = 2
3) Cosx = 0,75 ⇒ Sin²x = 1 - Cos²x = 1 - 0,75² = 1 - 0,5625 = 0,4375
y = 3 * 0,75 + 2 * 0,4375 - 1 = 2,25 + 0,875 - 1 = 2,125 - наибольшее
ответ : наименьшее - 4 , наибольшее 2,125
Решение.
Обозначим стороны прямоугольника как x и y.
Тогда периметр прямоугольника равен:
2(x+y)=26
Сумма площадей квадратов построенных на каждой из его сторон (квадратов, соответственно, два и это квадраты ширины и высоты, поскольку стороны смежные) будет равна
x2+y2=89
Решаем полученную систему уравнений. Из первого уравнения выводим, что
x+y=13
y=13-y
Теперь выполняем подстановку во второе уравнение, заменяя x его эквивалентом.
(13-y)2+y2=89
169-26y+y2+y2-89=0
2y2-26y+80=0
Решаем полученное квадратное уравнение.
D=676-640=36
x1=5
x2=8
Теперь примем во внимание, что исходя из того, что x+y=13 (см. выше) при x=5, то y=8 и наоборот, если x=8, то y=5
ответ: 5 и 8 см