f(x)=|x-1|-|x+1|+x Обзозначим график функции, как ломаную линию с отрезками [CA]-[AB]-[BD] (cм. чертеж во вложении), где [AB] пересекает точку начала координат О: [AO]=(OB], [CA] II [BD], т.к. A(-1;1) B(-3;-1) C(-3;-1) D(3;1) Вычислим k прямой y=kx, проходящей через точки А и В: А(-1;1) => 1=k*(-1) => k=-1 Вложение: таблицы и графики B(1;-1) => -1=k*1 => k=-1 Прямая а, проходящая через точки А,О,В имеет вид у=-х Прямая b, параллельная [AC] и [BD] и перпендикулярная прямой а, имеет вид у=х (k=1). В уравнении у=kx которая имеет с графиком данной функции только одну общую точку, k≠-1; k≠0; k≤1 k∈(-1;0)∪(0;1]
1) Смотри на картинке у=-2х+1 a)наименьшее и наибольшее значение функции на отрезке[-1;2] наибольшее - при х=-1 у=-2*(-1)+1=2+1=3 наименьшее - при х=2 у=-2*2+1=-4+1=-3 b)обозначите переменной х,при которых графич.функций расположены на оси Ох это х=0,5 2)Найдите координаты точки пересечения y=3-x,y=2x Решим систему уравнений: 3)a)Задайте линейную функцию y=kx,если известно,что ее график параллелен прямой -3x+y-4=0 y=3x b)Определите,возрастает или убывает заданная вами линейная функция возрастает, т.к. k>0
Обзозначим график функции, как ломаную линию с отрезками
[CA]-[AB]-[BD] (cм. чертеж во вложении), где [AB] пересекает точку начала координат О: [AO]=(OB],
[CA] II [BD], т.к. A(-1;1) B(-3;-1)
C(-3;-1) D(3;1)
Вычислим k прямой y=kx, проходящей через точки А и В:
А(-1;1) => 1=k*(-1) => k=-1
Вложение: таблицы и графики
B(1;-1) => -1=k*1 => k=-1
Прямая а, проходящая через точки А,О,В имеет вид у=-х
Прямая b, параллельная [AC] и [BD] и перпендикулярная прямой а,
имеет вид у=х (k=1).
В уравнении у=kx которая имеет с графиком данной функции только одну общую точку, k≠-1; k≠0; k≤1
k∈(-1;0)∪(0;1]