М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Vladik451051
Vladik451051
10.02.2022 20:36 •  Алгебра

Для заданной функции y = (x - 3) ² +5: а) определить вершину параболы; Б) найти ось симметрии параболы; в) Найдите точку пересечения с осью Ох; г) Найдите точку пересечения с осью; д) Нарисуйте эскиз график функции.​

👇
Открыть все ответы
Ответ:
милка308
милка308
10.02.2022

1) Сложение отрицательных чисел. Возьмем пример -3+(-3)= Оба числа отрицательны, так что получаем, по сути, -3-3= Теперь достаточно сложить модули этих чисел и вписать перед ними минус, так как он, повторюсь, отрицательны

2) Сложение отрицательных и положительных чисел. Допустим, мы имеем пример -7+5=...    Чтобы его решить, необходимо вычесть из числа с большим модулем число с меньшим модулем, не учитывая при этом знаки. 7-5=2. Потом мы подпишем знак минус перед двойкой, потому что у числа с большим модулем (семерки) значение было отрицательным.

Теперь важное примечание.

+- дают минус

-- дают плюс

Так что, если нам встретиться пример вроде 5-(-3), мы преобразуем его в 5+3 и получим 8

4,8(91 оценок)
Ответ:
shevelevaalla
shevelevaalla
10.02.2022
p(x)=a_{1}x^4+a_{2}x^3+a_{3}x^2+a_{4}x+a_{5}\\
 x=\sqrt{x_{1}}\\
 x=\sqrt{x_{1}}+b\\
 x=\sqrt{x_{1}}+2b\\
 x=\sqrt{x_{1}}+3b\\\\
 p(x)+a=a_{1}x^4+a_{2}x^3+a_{3}x^2 + a_{4}x+a_{5}+a\\
y=\sqrt{y_{1}}\\
y=\sqrt{y_{2}}\\
y=\sqrt{y_{3}}\\
y=\sqrt{y_{4}}\\\\ 




По теореме Виета для уравнение четвертой степени получаем соотношение   
4\sqrt{x_{1}}+6b = -\frac{a_{2}}{a_{1}}\\ \sqrt{x_{1}}(\sqrt{x_{1}}+b)+\sqrt{x_{1}}(\sqrt{x_{1}}+2b)+\sqrt{x_{1}}(\sqrt{x_{1}}+3b)+(\sqrt{x_{1}}+b)(\sqrt{x_{1}}+2b)+...=\frac{a_{3}}{a_{1}}\\ \sqrt{x_{1}}(\sqrt{x_{1}}+b)(\sqrt{x_{1}}+2b)+\sqrt{x_{1}}(\sqrt{x_{1}}+2b)(\sqrt{x_{1}}+3b).........=-\frac{a_{4}}{a_{1}} \\ \sqrt{x_{1}}(\sqrt{x_{1}}+b)(\sqrt{x_{1}}+2b)(\sqrt{x_{1}}+3b)=\frac{a_{5}}{a_{1}}\\\\ \sqrt{y_{1}}+\sqrt{y_{2}}+\sqrt{y_{3}}+\sqrt{y_{4}}=-\frac{a_{2}}{a_{1}}\\
\sqrt{y_{1}y_{2}}+\sqrt{y_{1}y_{3}}+\sqrt{y_{1}y_{4}}+\sqrt{y_{2}y_{3}}...+ = \frac{a_{3}}{a_{1}} \\ \sqrt{y_{1}y_{2}y_{3}}+\sqrt{y_{1}y_{2}y_{4}} [/tex]        

\left \{ {{4\sqrt{x_{1}}+6b=\sqrt{y_{1}}+\sqrt{y_{2}}+\sqrt{y_{3}}+\sqrt{y_{4}}
 } \atop {\sqrt{x_{1}}(\sqrt{x_{1}}+b)(\sqrt{x_{1}}+2b)(\sqrt{x_{1}}+3b)-\sqrt{y_{1}y_{2}y_{3}y_{4}}=a} \right. \\

Учитывая условия что коэффициенты все выражаются в радикалах , то  сумма всех корней выраженные в радикалах есть число радикальное . 
  По третьем  равенству первой системы  \sqrt{x_{1}x_{2}x_{3}}=Rad  , то произведение корней так же число радикальное , откуда с последних двух идет верное равенство
4,5(48 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ