Пусть 10a+b - двузначное число Впишем между его цифрами ноль, получим трёхзначное число 100a+b По условию, оно в 9 раз больше исходного числа, т.е. 100a+b=9(10a+b) 100a+b=90a+9b 100a-90a=9b-b 10a=8b a=8b:10 a=0,8b
при b=1 a=0,8*1=0,8 - не цифра при b=2 a=0,8*2=1,6 - не цифра при b=3 a=0,8*3=2,4 - не цифра при b=4 a=0,8*4=3,2 - не цифра при b=5 a=0,8*5=4 - цифра 45 - искомое число (45*9=405) при b=6 a=0,8*6=4,8- не цифра при b=7 a=0,8*7=5,6 -не цифра при b=8 a=0,8*8=6,4 -не цифра при b=9 a=0,8*9=7,2 -не цифра *** Для понимания хода решения и рассуждений показаны все варианты перебора
Итак, существует только одно двузначное число, обладающее указанными свойствами. Оно равно 45 ответ: 45
В решении.
Объяснение:
Решите задачу с составления уравнения. Разность двух чисел равна 25, а разность их квадратов 875. Найдите эти числа.
х - первое число.
у - второе число.
По условию задачи система уравнений:
х - у = 25
х² - у² = 875
Выразить х через у в первом уравнении, подставить выражение во второе уравнение и вычислить у:
х = 25 + у
(25 + у)² - у² = 875
625 + 50у + у² - у² = 875
50у = 875 - 625
50у = 250
у = 250/50
у = 5 - второе число.
х = 25 + у
х = 25 + 5
х = 30 - первое число.
Проверка:
30 - 5 = 25, верно.
30² - 5² = 900 - 25 = 875, верно.