ответ: S=1010.
Объяснение:
Представим данное вы ражение, как сумму двух арифметических прогрессий: (2020+2018+2016+...+2)+(-2019+(-2017)+(-2015)+...+(-1)).
1.
2020+2018+2016+...+2.
Sn=(a₁+an)*n/2
a₁=2020
d=a₂-a₁=2018-2020
d=-2.
an=a₁+(n-1)*d
2020+(n-1)*(-2)=2
2020-2n+2=2
2n=2020 |÷2
n=1010
S₁₀₁₀=(2020+2)*1010/2=2022*505.
2.
-2019+(-2017)+(-2015)+...+(-1)
a₁=-2019
d=-2017-(-2019)=-2017+2019=2
an=-2019+(n-1)*2=-1
-2019+2n-2=-1
2n=2020 |÷2
n=1010
S'₁₀₁₀=(-2019+(-1))*1010/2=-2020*505.
S=S₁₀₁₀+S'₁₀₁₀=2022*505+(-2020)*505=505*(2022-2020)=505*2=1010.
1)=8а²(в²-9с²)=8а²(в-3с)(в+3с).
2)=2(х²-12ху+36у²)=2(х-6у)².
3)=-2а(4а4-4а²+1)= -2а(2а²-1)².
4)=5(а³-8в6)=5(а³-(2в²)³)=5(а-2в²)(а²+2ав²+4в4)
5)=(а³+а²)-(ав-а²в)=а²(а+1)-ав(1+а)=(а+1)(а²-ав)=а(а+1)(а-в)
6)=с4(а-1)-с²(а-1)=(а-1)(с4-с²)=с²(а-1)(с²-1)=с²(а-1)(с-1)(с+1).
1)=(х-у)²-7²=(х-у-7)(х-у+7)
2)=а²-(3в-с)²=(а+3в-с)(а-3в+с)
3)=(в³)²-(2в²-3)²=(в³+2в²-3)(в³-2в²+3).
4)=(m³+3³n³)+(m+3n)²=(m+3n)(m²-3mn+9n²)+(m+3n)²=(m+3n)(m²-3mn+9n²+m+3n).
5)=x²-y²+2x+4y-3=(x²+2x+1)-(y²-4y+4)=(x+1)²-(y-2)²=(x+y-1)(x-y+3).