Объяснение:
1. Элементы множества могут быть перечислены в любом порядке.
1) {1/5; 2/5; 3/5; 4/5}
2) {ф; и; з; к; а}
3) {1; 2; 3; 0}
2. Пересечение и объединение множеств.
A = {1; 2; 3; 4; 6; 12}
B = {1; 2; 4; 8; 16}
Пересечение: {1; 2; 4}
Объединение: {1; 2; 3; 4; 6; 8; 12; 16}
3. Сравнить числа:
1) 5,(16) и 5,16
5,(16) = 5,1616...
5,16 = 5,1600...
5,(16) > 5,16
2) -2,(35) и -2,5
-2,(35) = -2,3535...
-2,5 = -2,5000...
2,5 > 2,3535..., у отрицательных чисел все наоборот поэтому:
-2,(35) > -2,5
3) 6,(23) и 6,24
6,(23) = 6,2323...
6,24 = 6,2400...
6,(23) < 6,24
4. И 5. Задания повторяют 1. И 2.
x(5x + 7) = 0
Произведение равно 0,когда один из множителей равен 0,значит,
x = 0
5x +7 = 0
5x = - 7
x = - 7/5
x = - 1,4
ответ: x = 0, x = - 1,4.
2) 2x - 5x² = 0
x ( 2 - 5x) = 0
x = 0
2 - 5x = 0
- 5x = - 2
5x = 2
x = 2/5
x = 0,4
ответ: x = 0, x = 0,4.
3) 4m² - 3m = 0
m( 4m- 3) = 0
m = 0
4m - 3 = 0
4m = 3
m = 3/4
m = 0,75
ответ: m = 0, m = 0,75.
4) y² - 2y - 8 = 2y - 8
y² - 2y - 2y - 8 + 8 = 0
y² - 4y = 0
y(y - 4) = 0
y = 0
y - 4 = 0
y = 4
ответ: y = 0, y = 4.
5) 3u² + 7 = 6u + 7
3u² - 6u + 7 - 7 = 0
3u² - 6u = 0
3u(u - 2) = 0
3u = 0
u = 0/3
u = 0
u - 2 = 0
u = 2
ответ: u = 0, u = 2.