a)y(наиб)=2
y(наим)=-2
b)y(наим)=-29
y(наиб)=31
Объяснение:
a)
1)Находим производную функции :
f'(x)=3x^2-3
2) Приравниваем производную к 0 ( находим нули производной):
3x^2-3=0 --> x=1
x=-1
3) Промежутку принадлежит только точка x=1 , поэтому значения функции на концах и в точке 1:
f(0)=0
f(1)=-2-наим
f(2)=8-6=2-наиб
б)
1)Находим производную функции :
f'(x)=3x^2+3
2) Приравниваем производную к 0 ( находим нули производной):
3x^2+3=0 --> решений нет , значит наибольшее значение достигает правом конце отрезка [-3;3] , а наименьшее - в левом:
3) f(-3)=-27-3+1=-29
f(3)=27+3+1=31
Пусть x км/ч — скорость второго автомобиля, тогда (x + 10) км/ч — скорость первого автомобиля. Они встретились через 3 часа. За это время второй автомобиль проехал 3x км, а первый автомобиль — 3(x + 10) км. Используя эти данные и условия задачи, составим уравнение и решим его:
3(x + 10) + 3x = 450,
3x + 30 + 3x = 450,
6x = 450 - 30,
6x = 420,
x = 420 / 6,
x = 70 км/ч.
Мы нашли скорость второго автомобиля. Теперь найдем скорость второго автомобиля:
70 + 10 = 80 км/ч.
ответ: скорость первого автомобиля равна 80 км/ч, скорость второго автомобиля — 70 км/ч.
Объяснение:
Так как коэффициент при х-е каждого графика – 2, то данные функции паралельны