1. Переводим минуты в часы:
24 минуты = 24/60 часа = 4/10 часа = 0,4 часа.
2. Принимаем за х (км/ч) скорость грузового автомобиля до остановки на автозаправочной
станции, (х + 10) км/ч - увеличенная скорость автомобиля.
3. Составим уравнение:
80/х - 80/(х + 10) = 0,4;
0,4х² + 0,4х = 800;
х² + 10х - 2000 = 0;
Первое значение х = (- 10 + √100 + 4 х 2000)2 = ( - 10 + √8100)/2 = (- 10 +90)/2 = 40.
Второе значение х = (- 10 - 90)/2 = - 50. Не принимается.
4. Увеличенная скорость грузового автомобиля на участке 80 километров 40 + 10 = 50 км/ч.
ответ: увеличенная скорость грузового автомобиля на участке 80 километров 50 км/ч.
Объяснение:
Напомним, что неравенства называются равносильными, если у них совпадают множества решений.
Решим первое неравенство. ОДЗ: x≥2. Если x=2, неравенство превращается в 0>0, поэтому x=2 не входит в ответ. Если x>2, корень из x-2 больше 0, поэтому он не влияет на знак левой части и может быть отброшен. Получается неравенство x-a>0; x>a. Остается пересечь условия x>2 и x>a. Если a<2, решениями первого неравенства служат все x>2, что не совпадает с множеством решений второго неравенства. Если же a≥2, решениями первого неравенства служат все x>a, что совпадает с множеством решений второго неравенства.
Вывод: неравенства равносильны при a≥2
Объяснение: