Данное выражение должно делиться на 10^7 = 2^7 * 5^7, то есть кратным 2^7 и 5^7 a должно быть чётным Пусть а=2n a(a+8)(a+16)(a+24)(a+32)=2n(2n+8)(2n+16)(2n+24)(2n+32)= =2^5(n+4)(n+8)(n+12)(n+16) > не кратно 2^7, a=2n не подходит. Пусть а=4n 4n(4n+8)(4n+16)(4n+24)(4n+32) = 2^10 *(n+2)(n+4)(n+6)(n+8) - кратно 2^7
произведение (n+2)(n+4)(n+6)(n+8) должно быть кратно 5^7, все сомножители дают разные остатки от деления на 5, поэтому среди них только один должен делиться на 5^7. наименьшее n - в множителе (n+8) ---> n=5^7 -8=78125-8=78117
1) по теореме косинусов имеем: a² = b² + c² - 2bc cos a = 25 - 24 cos 135° = 25 + 12√2 a = √(25 + 12√2) по теореме синусов, a / sin a = b / sin b sin b = sin a · b / a = √2 / 2 · 3 / √(25 + 12√2) = 3 / √(50 + 24√2) ∠b = arcsin(3 / √(50 + 24√2)) ∠c = 180° - 135° - ∠b = 45° - arcsin(3 / √(50 + 24√2)) 2) ∠a = 180° - ∠b - ∠c = 65° по теореме синусов b / sin b = a / sin a b = a sin b / sin a = 24.6 · √2 / 2 / (sin 65°) = 123√2 / (10 sin 65°) по теореме синусов c / sin c = a / sin a c = a sin c / sin a = 24.6 ·sin 70° / sin 65°
b(n)=3*2^n
384=3*2^n
2^n=128
n=7
ответ: Число 384 является членом геометрической прогрессии.