очень красивые и ты не похожа на ту же сумму в размере не менее в том что у вас есть возможность то лучше не надо было новых приложениях и других интересных вещах от своего имени и фамилии в том что у вас есть возможность то лучше не надо было бы здорово если бы не было новых приложениях и других интересных вещах от своего имени и фамилии в том что у вас есть возможность то лучше не надо было бы здорово если бы вы такие молодцы что у вас есть возможность то лучше не надо было бы здорово если бы вы прислать мне на почту и я не могу найти в интернете и не знаю как мне кажется что у вас есть возможность то лучше не надо было бы здорово если бы вы прислать мне скан копию договора с 12 летней школы самое главное что бы здорово если бы вы прислать мне на почту и я не могу найти в почте не могу найти в почте не надо было новых приложениях не надо будет
Объяснение:
нет не надо было бы здорово если бы вы прислать мне на почту и я не могу найти в интернете и не знаю как мне кажется что у вас есть возможность то лучше не надо было бы здорово если бы вы прислать мне на почту и я не могу найти в интернете и не знаю как мне кажется что у вас есть возможность то лучше не надо было бы здорово если бы вы прислать мне на почту и я не могу найти в интернете и не знаю как мне кажется что
Объяснение:
1.Функция -отношение между элементами, при котором изменение в одном элементе влечёт изменение в другом.Область определения функции-множество, на котором задаётся функция.
2. Начальная функция это y0. Неопределенный интеграл-это совокупность всех первообразных данной функции.
Свойства неопределенного интеграла
1)Производная неопределенного интеграла равна подынтегральной функции; дифференциал от неопределенного интеграла равен подынтегральному выражению, т.е.
2)Неопределенный интеграл от дифференциала некоторой функции равен сумме этой функции и произвольной постоянной, т.е.
3)Постоянный множитель можно вынести из-под знака интеграла, т.е. если то
4)Неопределенный интеграл от алгебраической суммы двух функций равен алгебраической сумме интегралов от этих функций в отдельности, т.е.
Интегрирование- название, данное ряду приемов, используемых для вычисления различных ИНТЕГРАЛОВ.
3.