чем мог
Объяснение:
Решение данной задачи будет исполнено с уравнения. Прежде всего нужно обозначить все необходимые данные для составления уравнения.
Пусть х - время работы первой трубы.
Пусть х + 6 - время работы второй трубы.
Теперь можно составить уравнение.
1/х + 1/(х + 6) = 1/4;
4 * (х + 6) + 4х = х * (х + 6);
4х + 24 + 4х = х2 + 6x;
х2 - 2x - 24 = 0;
Далее решаем задачу через дискриминант.
Д = 4 - 4 * ( - 24) = 4 + 96 = 100 = 10;
х1 = 2 + 10/2 = 6 (часов) - время работы 1 трубы.
х2 = 2 - 10/2 = - 4 - не подходит.
ответ: всю работу одна труба делает за 6 часов
x²=-1
левая часть уравнения - квадрат числа х, правая часть - число " -1", т.е. число меньшее нуля. Т.к. квадрат числа не может быть отрицательным, делаем вывод: уравнение не имеет корней.
|x|=-5
левая часть уравнения - модуль числа х, правая часть - число " -5", т.е. число меньшее нуля. Т.к. модуль числа не может быть отрицательным, делаем вывод: уравнение не имеет корней.
x⁶+1=0
x⁶=-1
левая часть уравнения - шестая (чётная) степень числа х, правая часть - число " -1", т.е. число меньшее нуля. Т.к. чётная степень числа не может быть отрицательной, делаем вывод: уравнение не имеет корней.
|x|+10=0
|x|=-10
левая часть уравнения - модуль числа х, правая часть - число " -10", т.е. число меньшее нуля. Т.к. модуль числа не может быть отрицательным, делаем вывод: уравнение не имеет корней.