Я полагаю что в задании неточность. Функция должна по здравому смыслу такой:
у = 3х² + 6х + 2
типа у = ах² + вх + с,
где а = 3, в = 6, с = 2
График этой функции квадратна парабола веточками вверх, т.к а > 0.
вершина параболы имеет координаты
Хв = -в/2а = - 6/(2·3) = -1
Ув = 3 - 6 + 2 = -1
График функции пересекает ось х в точках, где у = 0
3х² + 6х + 2 = 0
D = 36 - 24 = 12
√D = √12 = 2√3 ≈ 3,464
х₁ = (-6 - 3,464):6 = -1,577
х₂ = (-6 + 3,464):6 = -0,423
для таблицы произведём подсчёты
х = 3 у = 3·9 + 6·3 + 2 = 47
х = 2 у = 3·4 + 6·2 + 2 = 26
х = 1 у = 3 + 6 + 2 = 11
х = 0 у = 2
х = -1 у = 3 + -6 + 2 = -1(минимальное значение)
относительно прямой х = -1 график симметричен, поэтому и значения функции в симметричных точках одинаковы
х = -2 у = 2
х = -3 у = 11
х = -4 у = 26
х = -5 у = 47
Составляем таблицу
х 3 2 1 0 -0,423 -1 -1,577 -2 -3 -4 -5
у 47 26 11 2 0 -1 0 2 11 26 47
Время, за которое первый лыжник преодолел расстояние в 40 км будет:
40/(х-2)=t
Второй лыжник потратил столько же времени, сколько и первый, только преодолел 48 км, его время будет:
48/х=t
Т.к. время первого и второго лыжников равны, получаем уравнение:
t=40/(х-2)=48/х
Решаем это уравнение относительно х:
40 = 48
х-2 х
40*х=48*(х-2)
40х=48х-48*2
40х=48х-96
48х-40х=96
8х=96
х=96:8
х=12 км/ч - скорость второго лыжника.
Скорость первого лыжника на 2 км/ч меньше, чем у второго, т.е.:
12-2=10 км/ч - скорость первого лыжника.