х должен быть больше 0.
Прологарифмируем обе части неравенства по основанию2:
Log (х в степени Log х по осн.2) по основанию 2 (меньше или равно) Log16 по основанию2.
Log х по основанию 2 * Log х по основанию 2 (меньше или равно) 4.
(Log х по основанию 2) в квадрате меньше или равно 4
Пусть Log х по основанию 2 = у
у в квадрате меньше или равно 4
у в квадрате - 4 меньше или равно 0. Решим это неравенство методом интервалов.
(у - 2)(у+2) меньше или равно 0. Отсюда у меньше или равно 2, но больше или равно -2.
Тогда Log х по основанию 2 меньше или равно 2, но больше или равно -2.
или log х по основанию 2 меньше или равно iog 4 по основанию 2, но больше или равно log 1/4 по основанию 2.
Отсюда х меньше или равно 4, но больше или равно 1/4. Удачи!
1. Известно, что
, 
2. Известно, что
, тогда 
3. Обе точки имеют координаты
, причем при подставлении этих координат в уравнение функции, мы получаем верное равенство.
Смотрим на точку А:
Отлично, уравнение известно теперь в таком виде:
, в него подставим вторую точку и найдем
.
4. Решаем аналогично. Точка А:
Уравнение уже в виде:
Точка B:
5. Условие симметрии относительно прямой
такое, что у функции
меняются местами область определения и область значений, то есть подставляя
вместо
мы получаем по итогу
. При взаимно однозначном соответствии области определения и области значений (как в случае прямых) все вообще просто и работает везде.
Что нужно сделать: есть
, делаем