Пете нужно n секунд, чтобы проехать 1 круг. Васе нужно n+3 секунд, а Толе нужно n+7 секунд на 1 круг. Дистанция составляла x кругов. Петя проехал их за nx секунд, Вася за это время проехал x-1 кругов. nx = (n+3)(x-1) А Толя за это же время проехал x-2 кругов. nx = (n+7)(x-2) Раскрываем скобки { nx = nx + 3x - n - 3 { nx = nx + 7x - 2n - 14 Приводим подобные { n = 3x - 3 { 2n = 7x - 14 Умножаем 1 уравнение на -2 и складываем уравнения -2n + 2n = -6x + 6 + 7x - 14 0 = x - 8 x = 8 кругов была дистанция n = 3*8 - 3 = 21 сек нужно Пете, чтобы проехать 1 круг.
Графическое решение - это построение двух графиков: параболы у = х² и прямой линии у = -х + 6. Точки их пересечения и есть решение заданного уравнения.
Проверку правильности построения и определения точек можно выполнить аналитически. х² = 6 - х х² + х - 6 = 0. Квадратное уравнение, решаем относительно x: Ищем дискриминант:D=1^2-4*1*(-6)=1-4*(-6)=1-(-4*6)=1-(-24)=1+24=25; Дискриминант больше 0, уравнение имеет 2 корня:x_1=(√25-1)/(2*1)=(5-1)/2=4/2=2;x_2=(-√25-1)/(2*1)=(-5-1)/2=-6/2=-3.
График и таблица точек для построения параболы даны в приложении. Для построения прямой достаточно двух точек: х = 0, у = 6, х = 3, у = -3+6 = 3
ответ:х-первый рабочий
у-второй рабочий
3х=4у
х+у=147
система уравнений
х=147-у
в первое:
3(147-у)=4у;
у=63.
х=147-63=84.
Объяснение: