Пусть a, b - данные числа. Имеем систему уравнений (сразу занумерую их, но Вы сначала напишите под знаком системы): a - b = 19 (1) a^2 - b^2 = 627 (2) (2) можно представить в виде (a - b)(a + b) = 627 - по формуле сокращенного умножения. a - b мы уже знаем из первого уравнения, это 19, то есть 19*(a + b) = 627, a + b = 33. Тогда a = 33 - b, поставим в (1): 33 - b - b = 19, b = 7. Значит, a = 26. ответ: 7; 26. Система с нормальным оформлением в приложении. Не забудьте уточнить, что a и b - данные числа.
Possible derivation: d/dx(y) = d/dx(1/2 cos(2 x)-x) The derivative of y is zero: 0 = d/dx(-x+1/2 cos(2 x)) Differentiate the sum term by term and factor out constants: 0 = (d/dx(cos(2 x)))/2-d/dx(x) The derivative of x is 1: 0 = 1/2 (d/dx(cos(2 x)))-1 Using the chain rule, d/dx(cos(2 x)) = ( dcos(u))/( du) ( du)/( dx), where u = 2 x and ( d)/( du)(cos(u)) = -sin(u): 0 = -1+1/2-d/dx(2 x) sin(2 x) Factor out constants: 0 = -1-1/2 sin(2 x) 2 d/dx(x) Simplify the expression: 0 = -1-(d/dx(x)) sin(2 x) The derivative of x is 1: Answer: | | 0 = -1-1 sin(2 x)
ответ:24Объяснение:22
4242421424141241242142