На фотографии.
Объяснение:
Тут ситуация весьма неоднозначна. Тут будет аж две фигуры ограниченных этими графиками и осью Ox. Я нашёл и первую и вторую, какую вам выбрать и предоставить преподавателю, решать вам ;) ответ в обоих случаях получился примерным, потому что графики пересекаются не в целой точке. Решение для нахождения первой фигуры я обозначил римской цифрой 1, а второй - 2.
P.S. Я не понимаю, зачем преподаватели задают такие задания.
Вот, надеюсь, правильно. Желаю удачи.
P.P.S Сейчас я понял, что этих фигур ещё оказывается 3
0_0 Но, я думаю 2 будет достаточно :) Задание - найти ФИГУРУ. По идее, одну.
x/2 = (-1)^n arcSin(-1/2) + nπ, n ∈Z
x/2 = (-1)^(n+1) *π/6 + nπ, n ∈Z
x = (-1)^(n+1)*π/3 + 2nπ, n ∈Z
б) 2XosxCos4x - Cosx = 0
Cosx(2Cos4x -1) = 0
Cosx = 0 или 2Cos4x -1=0
x = π/2 + πk , k ∈Z Cos4x = 1/2
4x = +-arcCos1/2 + 2πn, n ∈Z
4x = +- π/3 + 2πn, n ∈Z
x = +-π/12 + πn/2 , n ∈Z
в) Sinx +√3Cosx = 0
Sinx = -√3Cos x |²
Sin²x = 3Cosx
1 - Cos²x = 3Cosx
Cos²x +3 Cosx -1 = 0
решаем как квадратное
D = 13
Cosx = (-3+√13)/2 нет решений.
Сosx = (-3 -√13)/2 нет решений