М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
RaspberryYogurt
RaspberryYogurt
03.12.2020 07:38 •  Алгебра

Решите, , полностью, либо частями:

👇
Открыть все ответы
Ответ:
Mariya1616161
Mariya1616161
03.12.2020

На данном уроке мы познакомимся с одним из самых важных и наиболее распространенных приемов, который применяется в ходе решения неопределенных интегралов – методом замены переменной. Для успешного освоения материала требуются начальные знания и навыки интегрирования. Если есть ощущение пустого полного чайника в интегральном исчислении, то сначала следует ознакомиться с материалом Неопределенный интеграл. Примеры решений, где я объяснил в доступной форме, что такое  интеграл и подробно разобрал базовые примеры для начинающих.

Технически метод замены переменной в неопределенном интеграле реализуется двумя :

– Подведение функции под знак дифференциала;

– Собственно замена переменной.

По сути дела, это одно и то же, но оформление решения выглядит по-разному.

Начнем с более простого случая.

Подведение функции под знак дифференциала

На уроке Неопределенный интеграл. Примеры решений мы научились раскрывать дифференциал, напоминаю пример, который я приводил:

То есть, раскрыть дифференциал – это формально почти то же самое, что найти производную.

Пример 1

Найти неопределенный интеграл. Выполнить проверку.

Смотрим на таблицу интегралов и находим похожую формулу: . Но проблема заключается в том, что у нас под синусом не просто буковка «икс», а сложное выражение. Что делать?

Подводим функцию  под знак дифференциала:

Раскрывая дифференциал, легко проверить, что:

Фактически  и  – это запись одного и того же.

Но, тем не менее, остался вопрос, а как мы пришли к мысли, что на первом шаге нужно записать наш интеграл именно так: ?  Почему так, а не иначе?

Формула  (и все другие табличные формулы) справедливы и применимы НЕ ТОЛЬКО для переменной , но и для любого сложного выражения ЛИШЬ БЫ АРГУМЕНТ ФУНКЦИИ ( – в нашем примере) И ВЫРАЖЕНИЕ ПОД ЗНАКОМ ДИФФЕРЕНЦИАЛА БЫЛИ ОДИНАКОВЫМИ.

Поэтому мысленное рассуждение при решении должно складываться примерно так: «Мне надо решить интеграл . Я посмотрел в таблицу и нашел похожую формулу . Но у меня сложный аргумент  и формулой я сразу воспользоваться не могу. Однако если мне удастся получить  и под знаком дифференциала, то всё будет нормально. Если я запишу , тогда . Но в исходном интеграле  множителя-тройки нет, поэтому, чтобы подынтегральная функция не изменилась, мне надо ее домножить на ». В ходе примерно таких мысленных рассуждений и рождается запись:

Теперь можно пользоваться табличной формулой :

Готово

Единственное отличие, у нас не буква «икс», а сложное выражение .

Выполним проверку. Открываем таблицу производных и дифференцируем ответ:

Получена исходная подынтегральная функция, значит, интеграл найден правильно.

Найти неопределенный интеграл.

:

Объяснение:

4,6(48 оценок)
Ответ:
ксюша1704
ксюша1704
03.12.2020

1) Используя формулу n-го члена арифметической прогрессии a_n=a_1+(n-1)d, вычислим двадцатый член этой прогрессии:

a_{20}=a_1+(20-1)d=a_1+19d=-8+19\cdot2=-8+38=30


ответ: 30.


2) Формула суммы первых n членов арифметической прогрессии следующая: S_n=\dfrac{a_1+a_n}{2}\cdot n

a_1=7;~~ d=a_2-a_1=11-7=4

Найдем же сначала восемнадцатый член арифметической прогрессии

a_{18}=a_1+(18-1)d=a_1+17d=7+17\cdot4=75


S_{16}=\dfrac{a_1+a_{16}}{2}\cdot 16=8\cdot(a_1+a_{16})=8\cdot(7+75)=656


ответ: 656.


3) Первый член: a_1=4-5\cdot1=-1

  Второй член: a_2=4-5\cdot2=-6

 Третий член:  a_3=4-5\cdot3=-11

Как видно, каждый последующий член уменьшается на (-5),т.е. это разность d = -5, следовательно, последовательность является арифметической прогрессией.


4) Используя n-ый член арифметической прогрессии, найдем ее разность

a_{10}=a_1+(10-1)d=a_1+9d\\ d=\dfrac{a_{10}-a_1}{9}=\dfrac{-46+1}{9}=-5


a_n=a_1+(n-1)d\\ -86=-1+(n-1)\cdot(-5)\\ -85=-5(n-1)\\ n-1=17\\ n=18

Да, является арифметической прогрессией.


5) Данная последовательность является арифметической прогрессии с первым членом a_1=2 и разностью прогрессии d=1

Всего таких членов не трудно посчитать по формуле n-го члена арифметической прогрессии:

92=2+n-1\\ n=91


То есть, нужно посчитать сумму первых 91 членов арифметической прогрессии

S_{91}=\dfrac{a_1+a_{91}}{2}\cdot91=\dfrac{2+92}{2}\cdot91=4277


ответ: 4277.

4,5(69 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ