Пусть событие А1- встретил черную кошку, Пусть событие А2- встретил злую собаку. Событие А3 не встретил ни кошку ни собаку и событие А4 встретил либо кошку либо собаку. Р(А1UA2) = P(A4)=Р(А1)+Р(А2)-P(A1∩A2)=0,1+0,4-0,04=0,46P(A3)=1-P(A4)=1-0,46=0,54 Пусть событие А1- вызвали на первом уроке, событие А2- вызвали на втором уроке. Событие А3 не вызвали ни на первом ни на втором уроке, А4 вызвали хотя бы на одном из уроков. Р(А1UA2) = P(A4)=Р(А1)+Р(А2)-P(A1∩A2)=0,1+0,3-0,03=0,37Событие А3 противоположно событию А4, P(A3)=1-P(A4)=1-0,37=0,63
АВСД - ромб. Через вершину А проведена прямая а параллельна диагонали ВД. Для доказательства используем одно из свойств ромба: его диагонали пересекаются под прямым углом. (Здесь даже не важно под каким углом они пересекаются). Поскольку прямая а и ВД параллельны, а СД пересекает одну из параллельных прямых, то она обязательно пересечет и вторую прямую, т.е. прямую а. Есть теорема: Пусть три прямые лежат в некоторой плоскости. Если прямая пересекает одну из параллельных прямых, то она пересекает и вторую прямую. Что и требовалось для доказательства.
Р(А1UA2) = P(A4)=Р(А1)+Р(А2)-P(A1∩A2)=0,1+0,4-0,04=0,46P(A3)=1-P(A4)=1-0,46=0,54
Пусть событие А1- вызвали на первом уроке, событие А2- вызвали на втором уроке. Событие А3 не вызвали ни на первом ни на втором уроке, А4 вызвали хотя бы на одном из уроков.
Р(А1UA2) = P(A4)=Р(А1)+Р(А2)-P(A1∩A2)=0,1+0,3-0,03=0,37Событие А3 противоположно событию А4, P(A3)=1-P(A4)=1-0,37=0,63