6х^2-3x =0 вынесем общий множитель за скобки: 1) 3x(2x-1)=0 произведение двух множителей равно 0, если один из них или оба равны 0: 3х=0 или 2х-1=0 первый корень х=0 2х-1=0 2х=1 х=1/2 - второй корень. 2)25х^2=1 x^2=1/25 x=+- 5 3)4x^2+7x-2=0 вычислим дискриминант D=b^2-4ac D=49+32=81 x=(-7+-9)/8 x первое =-2, х второе х=2/8=1/4 4)4x^2+20x+1=0 D=400-16=384 x=(-20+-VD):8 V - обозначение квадратного корня 5) 3x^2 + 2x + 1 =0 D=4-12=-8<0 уравнение решений не имеет, т.к дискриминант отрицательный 6) х^2 + 2,5x -3=0 D= 2,5^2-4*1*(-3)=18,25 x=( -2,5+- VD):2 7) x^4 -13x^2 +36=0 введем обозначение x^2= t, получим новое уравнение t^2 -13t +36=0 D= 169+144=313 К сожалению, корень квадратный из дискриминанта не извлекается. Надо проверить правильность условия, потому что нам нужно решит уравнение х^2=t и найти х.
Я учусь по учебнику Мордковича (алгебра и начала анализа 10 класс, профильный уровень). 1) 2sinx+1=0 2cosx-\/3=0
sinx=-1/2 cosx=\/(3)/2
x=-п/6+2пn, n - целое число х=-5п/6+2пk, k - целое число х=п/6+2пl, l - целое число х=5п/6+2пq, q - целое число
х=п/6+пn x=-п/6+пk
2) tgx=t, t не равно п/2+пn, n - целое число 3t^3-2t-1=0 (t-1)(3t^2+3t+1)=0 (1) t=1 (2) 3t^2+3t+1=0 D=9-12<0 уравнение не имеет корней в действительных чистах t=1 tgx=1 x=п/4+пk, k - целое число
3) (1) cos6x=0, cos2x не равно 0 6х=п/2+пn, n - целое число х=п/12+пn/6 x не равно п/4+пk/2, k - целое число x=п/12+пm/6, m - целое число, неравно 3k+1
4) sin3x=0 2cosx-\/2=0
3x=пn, n - целое число cosx=\/(2)/2
x=пn/3 x=п/4+2пk, k - целое число х=-п/4+2пm, m - целое число
Объяснение:
смотрите: Х можно представить как 3/3 Х, потому что 3/3 = 1
3/3Х + 2/3Х = 5/3Х