М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
girina210482
girina210482
28.03.2023 04:00 •  Алгебра

5. решите систему уравнений графическим х + у=8 {у - 4х = -10

👇
Ответ:

2x + y=8

y-4x=-10

8x+y=8

4,6(78 оценок)
Ответ:
йойо3
йойо3
28.03.2023

ответ:

(3; 2)

объяснение:

все на фото ниже

4,8(52 оценок)
Открыть все ответы
Ответ:
Oхxxymiron
Oхxxymiron
28.03.2023

Подготовка к ЕГЭ

Задать во Войти

АнонимМатематика23 марта 22:16

найдите сумму корней квадратного уравнения х^2-6x+2=0

ответ или решение1

Михайлов Вячеслав

1. Вспомним формулу дискриминанта:

Дискриминант D квадратного трёхчлена a * x2 + b * x + c равен b2 - 4 * a* c.

Корни квадратного уравнения зависят от знака дискриминанта (D):

D > 0 - уравнение имеет 2 различных вещественных корня (х1 = (-b +√D) / (2 * а)), х2 = (-b -√D) / (2 * а));

D = 0 - уравнение имеет 1 корень (х = (-b +√D) / (2 * а));

D < 0 - уравнение не имеет вещественных корней.

2. Найдём дискриминант заданного уравнения:

D = 36 - 4 * 1 *2;

D = 36 - 8;

D = 28.

3. Дискриминант больше 0, значит уравнение имеет два корня:

х1 = (6 +√28) / (2 * 1);

х1 = (6 + 2√7) / 2;

х1 = 3 + √7;

х2 = (6 - √28) / (2 * 1);

х2 = (6 - 2√7) / 2;

х2 = 3 - √7;

4. Найдём сумму корней уравнения:

х1 + х2 = 3 +√7 + 3 -√7 = 6.

ответ: Сумма корней квадратного уравнения равна 6.бъяснение:

4,6(23 оценок)
Ответ:
Artemko1337
Artemko1337
28.03.2023
1)a(i) = a(k) + (i – k)*d, значит d = (a(i) – a(k))/(i-k).
2)Так, числовая последовательность а1;  а2;  а3;  а4;  а5; … аn будет являться арифметической  прогрессией, если а2 = а1 + d;
а3 = а2 + d;
a4 = a3 + d;
a5 = a4 + d;

………….

an = an-1 + d
3)
4)Пусть имеется последовательность чисел:


10, 30, 90, 270...

Требуется найти знаменатель геометрической прогрессии.
Решение:

1 вариант. Возьмем произвольный член прогрессии (например, 90) и разделим его на предыдущий (30): 90/30=3.

2 вариант. Возьмем любой член геометрической прогрессии (например, 10) и разделим на него последующий (30): 30/10=3.

ответ: знаменатель геометрической прогрессии 10, 30, 90, 270... равен 3
5)an+1 = an• q,
6)b₁(1-qⁿ)/(1-q), q ≠ 1
4,6(72 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ