М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Anastasia191327
Anastasia191327
10.02.2021 16:06 •  Алгебра

1)не выполняя построения, определи, принадлежит ли графику функции y=x2 заданная точка a(2; 4).

a)не принадлежит
b)принадлежит

2)используя формулу, заполни данную таблицу.
y=-2,4+x

x −4,2 −7,4 1,9 9,7 10,8
y -
3)график функции y=4x+5 пересекает ось oy в точке с координатами:

;

4)функции заданы формулами f(x)=x2+1 и g(x)=x2−1. сравни f(1) и g(6).

ответ: f((6).

👇
Ответ:
Нетта771
Нетта771
10.02.2021

1)

4=2*2

4=4

В) Принадлежит

2)

y=-2,4+x

x −4,2 −7,4 1,9 9,7 10,8

У1=-2,4 + (-4,2) =-6,6

У2= - 2,4+(-7,4)=-9,8

У3=-2,4+1,9= -0,5

У4= - 2,4+9,7= 7,3

У5= - 2,4+10,8 = 8,4

y - -6,6 -9,8 -0,5 7,3 8,4

3)

4х+5 = 0

4х= - 5

Х = - 5/4

(-5/4,0) точка пересечения с осью Оу

4)

f(x)=x2+1 и g(x)=x2−1

Например Подставим вместо х2 = 1

f(x)=1+1 > g(x)=1−1

f(x)=2 > g(x)=0

следовательно

f(x)=x2+1 >g(x)=x2−1.

4,4(30 оценок)
Открыть все ответы
Ответ:
Dimatrubilov
Dimatrubilov
10.02.2021

\cos^2\dfrac{x}{4} - \sin^2\dfrac{x}{4} = \sin\left(\dfrac{3\pi}{2} - x\right)

В левой части можно применить формулу косинуса двойного угла:

\boxed{\cos^2\alpha - \sin^2\alpha = \cos2\alpha}

В правой части можно заменить по формуле приведения:

\boxed{\sin\left(\dfrac{3\pi}{2} - \alpha\right) = -\cos\alpha}

Тогда уравнение будет выглядеть так:

\cos\dfrac{x}{2} = -\cos x\\
\\
\\
\cos\dfrac{x}{2} + \cos x = 0

Используем формулу суммы косинусов:

\boxed{\cos\alpha + \cos\beta = 2\cos\dfrac{\alpha + \beta}{2}\cdot\cos\dfrac{\alpha-\beta}{2}}

В нашем случае получается:

2\cos\dfrac{\frac{x}{2} + x}{2}\cdot\cos\dfrac{\frac{x}{2} - x}{2} = 0\\
\\
\\
2\cos\dfrac{\frac{3x}{2}}{2}\cdot\cos\dfrac{-\frac{x}{2}}{2} = 0\\
\\
\\
2\cos\dfrac{3x}{4}\cdot \cos\left(-\dfrac{x}{4}\right) = 0\ \ \ \ \ \Big|:2\\
\\
\\
\cos\dfrac{3x}{4}\cdot\cos\left(-\dfrac{x}{4}\right) = 0

Так как  \boldsymbol{\cos\left(-\alpha\right) = \cos\alpha}, то:

\cos\dfrac{3x}{4}\cos\dfrac{x}{4} = 0

Произведение равно нулю тогда и только тогда, когда хотя бы один из множителей равен нулю, а другой при этом имеет смысл. Значит, имеем два варианта:

\left[
\begin{gathered}
\cos\dfrac{3x}{4} = 0\\
\\
\cos\dfrac{x}{4} = 0
\end{gathered}\ \ \ \ \ \ \Leftrightarrow\ \left[
\begin{gathered}
\dfrac{3x}{4} = \dfrac{\pi}{2} + \pi k\\
\\
\dfrac{x}{4} = \dfrac{\pi}{2} + \pi k
\end{gathered}\ \ \ \ \ \ \Leftrightarrow\ \left[
\begin{gathered}
3x = 2\pi + 4\pi k\\
\\
x = 2\pi + 4\pi k
\end{gathered}\ \ \ \ \ \ \Leftrightarrow

\Leftrightarrow\ \left[
\begin{gathered}
x = \dfrac{2\pi}{3} + \dfrac{4\pi k}{3}\\
\\
x = 2\pi + 4\pi k
\end{gathered}\ \ \ \ \ ,\ \boxed{\boldsymbol{k\in\mathbb{Z}}}

Теперь подбираем корни, которые принадлежат отрезку  \boldsymbol{\left[3\pi;\ \dfrac{9\pi}{2}\right]} . Для этого можно решить двойное неравенство для каждой серии корней.

Для первой серии:

3\pi \leqslant\dfrac{2\pi}{3} + \dfrac{4\pi k}{3}\leqslant\dfrac{9\pi}{2}\\
\\
\\
3\leqslant\dfrac{2}{3} + \dfrac{4k}{3} \leqslant \dfrac{9}{2}\\
\\
\\
3 - \dfrac{2}{3} \leqslant \dfrac{4k}{3} \leqslant \dfrac{9}{2} - \dfrac{2}{3}\\
\\
\\
\dfrac{7}{3} \leqslant \dfrac{4k}{3} \leqslant \dfrac{23}{6}\\
\\
\\
14\leqslant 8k\leqslant 23\\
\\
\\
\dfrac{7}{4} \leqslant k\leqslant \dfrac{23}{8}\\
\\
\\
\boldsymbol{1\dfrac{3}{4} \leqslant k\leqslant 2\dfrac{7}{8}}

Не забываем, что k - это обязательно целое число. В данном промежутке есть только одно такое: 2. Значит, \boxed{\boldsymbol{k = 2}} . Подставляем это значение в серию корней, для которой мы решали неравенство.

\dfrac{2\pi}{3} + \dfrac{4\pi \cdot 2}{3} = \dfrac{2\pi}{3} + \dfrac{8\pi}{3} = \boldsymbol{\dfrac{10\pi}{3}}

Одно искомое уже нашли. Теперь тем же самым образом проверим вторую серию корней.

3\pi \leqslant 2\pi + 4\pi k\leqslant \dfrac{9\pi}{2}\\
\\
\\
3\leqslant 2 + 4k\leqslant\dfrac{9}{2}\\
\\
\\
1 \leqslant 4k \leqslant \dfrac{5}{2}\\
\\
\\
\boldsymbol{\dfrac{1}{4} \leqslant k\leqslant \dfrac{5}{8}}

Опять же, учитывая то, что k - целое число, данное неравенство НЕ ИМЕЕТ РЕШЕНИЙ, поскольку в получившемся промежутке нет целых чисел.

Итого мы нашли одно значение, которое одновременно и является корнем уравнения, и входит в промежуток  \left[3\pi;\ \dfrac{9\pi}{2}\right] , а именно \boxed{\boldsymbol{\dfrac{10\pi}{3}}}.

ответ:  \dfrac{10\pi}{3}

4,6(13 оценок)
Ответ:
катя5080
катя5080
10.02.2021
Существует два перевода из периодической дроби в обыкновенную: 1) надо из числа, стоящего до второго периода, вычесть число, стоящее до первого периода и записать эту разность в числитель, а в знаменателе написать цифру 9 столько раз, сколько цифр в периоде, и после девяток дописать 
столько нулей, скока цифр между запятой и первым периодом: 0,11(6)                116-11     105     7  0,11(6)===                900         900     60               235-2        233 0.2(35)= =                990         990  2)    а)Найдем период дроби, т.е. подсчитаем, сколько цифр находится в периодической части. К примеру, это будет число k.    б)Найдем значение выражения X · 10k    в)Из полученного числа надо вычесть исходное выражение. При этом периодическая часть «сжигается», и остается обычная дробь.    г)В полученном уравнении найти X. Все десятичные дроби переводим в обыкновенные. 0,11(6)=Х k=1 10^(k)=1 тогда x*10=10*0,116666...=1,166666... 10X-X=1,166666...-0,116666...=1,16-0,11=1,05 9X=1,05      105       7 X==      900       60 0.2(35): k=2 10^k=100 100X=0.2353535...*100=23,535353 100X-X=23,535353-0.2353535=23,3 99x=23,3       233 x=       900
4,7(37 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ