 
                                                 
                                                 
                                                 : если k>0, функция возрастает, k<0 - убывает. Всё просто. Т.е. в убывании обе функции линейные, k<0 и в первом (k=-7), и во втором
 : если k>0, функция возрастает, k<0 - убывает. Всё просто. Т.е. в убывании обе функции линейные, k<0 и в первом (k=-7), и во втором  . С этим разобрались. Теперь к возрастанию. Я не знаю, в каком Вы классе, постараюсь объяснить доступно. Чтобы определить возрастание/убывание функции, нужно взять значения
. С этим разобрались. Теперь к возрастанию. Я не знаю, в каком Вы классе, постараюсь объяснить доступно. Чтобы определить возрастание/убывание функции, нужно взять значения  , два произвольных числа, но
, два произвольных числа, но  . Пусть мы имеем функцию
 . Пусть мы имеем функцию  , тогда вычисляем значения функции в этих двух точках, имеем
, тогда вычисляем значения функции в этих двух точках, имеем  и
 и  , так вот, если
, так вот, если  , тогда функция возрастающая, если же
, тогда функция возрастающая, если же  , то она убывающая, но только ПРИ УСЛОВИИ, что она монотонна на всей области определения (т.е. ТОЛЬКО возрастает или ТОЛЬКО убывает), в противном случае мы говорим о ПРОМЕЖУТКАХ возрастания и убывания. 1)
, то она убывающая, но только ПРИ УСЛОВИИ, что она монотонна на всей области определения (т.е. ТОЛЬКО возрастает или ТОЛЬКО убывает), в противном случае мы говорим о ПРОМЕЖУТКАХ возрастания и убывания. 1) , т.е. функция возрастающая. А вот задание с
, т.е. функция возрастающая. А вот задание с  не совсем корректно, так как эта функция возрастает только при x>0, при x<0 она убывает, x=0 - Точка экстремума. Если уж брать математический анализ, то легко взять производную и исследовать функцию на "скорость изменения" (алгебраический смысл производной)
 не совсем корректно, так как эта функция возрастает только при x>0, при x<0 она убывает, x=0 - Точка экстремума. Если уж брать математический анализ, то легко взять производную и исследовать функцию на "скорость изменения" (алгебраический смысл производной)  . Если производная в некоторой точке отрицательная, то функция убывает, если производная положительная, то функция возрастает, если производная равна 0, то это точка экстремума. Очевидно, что при x<0 функция убывает, при x>0 возрастает. Если же доказывать возрастание на промежутке x>0, тогда действуем, как и в первом случае (только не берем значения из ненужного нам промежутка):
. Если производная в некоторой точке отрицательная, то функция убывает, если производная положительная, то функция возрастает, если производная равна 0, то это точка экстремума. Очевидно, что при x<0 функция убывает, при x>0 возрастает. Если же доказывать возрастание на промежутке x>0, тогда действуем, как и в первом случае (только не берем значения из ненужного нам промежутка):  , функция возрастает, что и требовалось доказать.
, функция возрастает, что и требовалось доказать.
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                
a) a=2, b= -1, c= -6
б) a=4, b=9, c= 20
a) (x-3)(x+3)=0
x1=3, x2= -3
б) x²≠-9
x∈∅
в) x(x-9)=0
x1= 0, x2= 9
г) x(x+9)=0
x1= 0, x2= -9
д) 2x²-x-6=0
D= 1+48= 49
x1= (1+7)/4= 2
x2= (1-7)/4= -1,5
е) 4x²+9x+20=0
D= 81-320
D<0
x∈∅
а) x²+2x-8/x²+4x= (x²-2x+4x-8)/x(x+4)= (x+4)*(x-2)/x(x+4)= (x-2)/x или 1- 2/x
б) y²-y-6/y²+2y= (y²+2y-3y-6)/y(y+2)= (y-3)(y+2)/y(y+2)= (y-3)/y или 1- 3/y