8 изначально, 9 после ускорения.
Объяснение:
Представим заказ за y, а ежедневную норму как x и получаем уравнения:
20x=y;
18(x+1) = y + 2;
Раскроем скобки 2го уравнения:
18x + 18 = y + 2;
Перенесем 12 через знак равенства и получим:
18x + 18 + (-2) = y;
18x + 16 = y;
Получаем систему уравнений:
20x = y;
18x + 16 = y;
Подставим первую часть любого уравнения во вторую часть другого уравнения:
18x + 16 = 20x;
18x + 16 + (-20x) = 0;
-2x + 16 = 0;
-2x = -16
x = (-16) / (-2) = 8
Изначально он делал 8, но если надо найти сколько он выполнил при ускорении работы то прибавим к ответу 1:
8 + 1 = 9.
1
8x-6x=13-11
2x=2
x=1
2
4(5x+2)=7x-5
20x+8=7x-5
20x-7x=-5-8
13x=-13
x=-1
3
7(2x-1)-3x=x-17
14x-7-3x=x-17
14x-3x-x=-17+7
10x=-10
x=-1