Первообразная (F(x)) - это функция (а не точка), которая ищется интегрированием другой функции (f(x))
Объяснение:
Находим интеграл от (3x-2)^8, для этого преобразовываем дифференциал (dx). добавляем 1/3 * 3 и тройку заносим под знак дифференциала: d(3x), 1/3 остаётся за интегралом. Константу можно добавить "просто так", ведь производная простого числа - 0, и получаем d(3x-2). Далее интегрируем это выражение как одну переменную: интеграл от а равен а^2/2. здесь интеграл от а^8 = а^9/9. Получаем ответ, не забываем С
1) При a=0 уравнение прямой принимает вид by+c=0, или y=-c/b. Это значит, что все точки нашей прямой имеют одинаковую ординату y=-c/b, а это означает, что прямая параллельна прямой Ox.
2) При b=0 уравнение принимает вид ax+c=0, или x=-c/a. Это значит, что все точки прямой имеют одинаковую абсциссу x=-c/a, т.е. прямая параллельна оси Oy. По условию, a=5, c=5, и уравнение принимает вид x=-5/5=-1. ответ: уравнение прямой есть х=-1