Много избыточных данных в . видимо чтобы запутать. мне представляется все гораздо проще. если скорость каждого автобуса увеличится в двое, то в двое увеличится и их общая скорость сближения, следовательно в двое уменьшиться время в пути. значит и к месту встречи они доберутся в двое быстрее. и встретятся а во сколько они выехали? мы не знаем их время в пусть выехали они в 6 утра. встретились в 12 дня. в пути были 12-6=6 часов. увеличив в двое скорость - в двое уменьшится скорость в пути 6: 2=3 ч. встретятся они в 6+3=9 ч. или еще как вариант, но не уверен в правильности обозначим скорости автобусов через х и у, тогда х+у в 12.00 2х+у в 12.00 - 0.56 = 11.04 х+2у в 12.00 - 1.05 = 10.55 если сложим два последних уравнения (2х+у)+(х+2у) и вычтем первое (2х+у)+(х++у)=2х+у+х+2у-х-у=2х+2у а теперь попробуем тоже самое сделать с правыми частями 11.04+10.55-12.00=21.59 - 12.00= 9.59 получается так, что встреча будет в 9.59
Рассмотрим по порядку: 1. Похоже, потерялся знак >, потому что стоит точка. Тогда неравенство верно, ведь если из большего числа отнять меньшее, то получится положительное число, а оно явно больше -21. 2. Неверно, так как чем больше абсолютная величина отрицательного числа, тем это число меньше. Например, пусть a = 10, b = 5 (нам разрешено брать натуральные a и b). Тогда -2*10 < -2*5, потому что -20 < -10 3. Неверно, потому что частное меньше единицы, если числитель меньше знаменателя, а по условию a > b 4. Неверно, ибо a > b