1) (2х-у)/у 2) - 2у / (х+у) 3) 5/6с
Объяснение:
(2х/у² - 1/2х ):(1/у+1/2х)= ( приводим к общему знаменателю в каждой скобке отдельно, в первой скобке знаменатель 2ху²,во второй 2ху)
Приводим к общему знаменателю домножив первый на 2х второй член первых скобок на у², во второй скобке на 2х и второй на у.) получим
(4х² -у²)/2ху : (2х+у)/2ху =
(2х-у)(2х+у) 2ху
х = (2х-у)/у
2ху ² (2х+у)
2) сперва приведем к знаменателю а потом по формуле сокращенного умножения разложим
(х²-2ху+у²-х²+у² ) / (х-у)(х+у)= 2у(у-х) / (х-у)(х+у)= -2у(х-у) / (х-у)(х+у)
=-2у / (х+у)
(3с+2с)/6 *1/с²=5с/6с²=5/6с
Объяснение:
z = 1/(2x^2) + 1/(2y^2), при условии 1/x^4 + 1/y^4 = 2
Выразим y через x
1/y^4 = 2 - 1/x^4 = (2x^4 - 1)/x^4
1/(2y^2) = √(2x^4 - 1)/(2x^2)
Область определения: x ≠ 0; y ≠ 0; x^4 > 1/2; |x| > 1/(кор. 4 ст. из 2) ≈ 0,84
В функцию z входит 1/(2y^2), поэтому я так и написал.
z = 1/(2x^2) + 1/(2y^2) = 1/(2x^2) + √(2x^4 - 1)/(2x^2) = (√(2x^4 - 1) + 1) / (2x^2)
Теперь находим производную функции уже одной переменной.
z ' = [8x^3/(2√(2x^4 - 1))*2x^2 - 4x(√(2x^4 - 1) + 1) ] / (4x^4) =
= [2x^4/√(2x^4 - 1) - √(2x^4 - 1) - 1] / x^3
В точке экстремума производная, то есть ее числитель, равна 0.
2x^4/√(2x^4 - 1) - √(2x^4 - 1) - 1 = 0
(2x^4 - (2x^4 - 1)) / √(2x^4 - 1) = 1
1/√(2x^4 - 1) = 1
√(2x^4 - 1) = 1
2x^4 - 1 = 1
2x^4 = 2
x^4 = 1
x1 = -1; x2 = 1;
y^4 = x^4/(2x^4 - 1) = 1/(2-1) = 1; y1 = -1; y2 = 1.
z = 1/(2x^2) + 1/(2y^2) = 1/(2*1) + 1/(2*1) = 1
Критические точки: (-1; -1; 1); (-1; 1; 1); (1; -1; 1); (1; 1; 1).
При x = -2 < -1 будет
z ' = (2*16/√15 - √15 - 1) / (-8) ≈ 3,4/(-8) < 0
Функция падает.
При x = -0,9 € (-1; -1/(кор. 4 ст из 2) ) будет
z ' = (2*0,9^4/√(2*0,9^4-1) - √(2*0,9^4-1) - 1) / (-0,9)^3 =
= (1,3122/√0,3122 - √0,3122 - 1) / (-0,729) ≈ 0,8/(-0,73) < 0
Функция падает.
При x < -1 функция падает и при x > -1 функция тоже падает.
Значит, x = -1 - это критическая точка, но не экстремум.
Тоже самое с x = 1.
При x € (1/кор. 4 ст из 2); 1) функция растет, и при x > 1 функция тоже растет.
Поэтому у этой функции экстремумов нет.
y=-2x+15
Объяснение:
y-y1=m(x-x1)
y-11=-2(x-(-2))
y-11=-2x+4
y=-2x+15