
— прямая пропорциональность.
— прямая пропорциональность, то есть доказать, что в выражении 
находится в первой степени (не
, не
, не
и не
, а просто
).
. Если внимательно посмотреть это выражение можно видоизменить по формулам сокращенного умножения, а именно по формуле «разность квадратов». Действительно, данное выражение имеет вид
, где
, и
. Формула «разность квадратов» раскрывается так:
.
.
,
находится в первой степени, а значит зависимость
— есть прямая пропорциональность. Доказано.
Свойства числовых неравенств:
1. Неравенства одного знака можно складывать: a > b, c > d, тогда
a + c > b + d.
2. Части неравенства можно умножить на одно и то же, не равное нулю число. Если число отрицательное, то знак неравенства изменится на противоположный: a > b, c > 0, тогда ac > bc; a > b, c < 0, тогда ac < bc.
Имеем: a > 5, b > 1, c > 3.
Тогда 2а > 10, bc > 3, значит, 3bc > 9 и, следовательно, 2а + 3bc > 19.
Таким образом, 2а + 3bc > 15.
Доказано.
ответ:
всё указал
объяснение: