Объяснение:
Так как это прямые, то они имеют максимум одну точку пересечения, либо не имеет ни одной, если они параллельны.
а) y1 = 17x - 3; y2 = -2x
y1 = y2 - это условие пересечения
17x - 3 = -2x ⇒ 19x = 3 ⇒ x = 3/19
y(3/19) = 17*3/19 - 3 = -2 * 3/19 = -6/19.
ответ: (3/19; -6/19)
б) y1 = x/3; y2 = 2 - 11x
y1 = y2
x/3 = 2 - 11x | * 3 ⇒ x = 6 - 33x ⇒ 34x = 6 ⇒ x = 6/34 = 3/17
y(3/17) = (3/17) / 3 = 2 - 11*3/17 = 1/17.
ответ: (3/17; 1/17)
в) y1 = 2/3x - 3; y2 = 2.5y1 = y22/3x - 3 = 2.5 ⇒ 2/3x = 5.5 | * 3/2 ⇒ x = 8.25
y(8.25) = 2*8.25/3 - 3 = 2.5
ответ: (8.25; 2.5)
<!--c-->
Преобразим заданное уравнение:
x3+12x2−27x=a
С производной построим график функции y=x3+12x2−27x.
1. Введём обозначение f(x)=x3+12x2−27x.
Найдём область определения функции D(f)=(−∞;+∞).
2. Найдем стационарные и критические точки, точки экстремума и промежутки монотонности функции:
f′(x)=(x3+12x2−27x)′=3x2+24x−27.
Внутренние точки области определения функции, в которых производная функции равна нулю, назывём стационарными, а внутренние точки области определения функции, в которых функция непрерывна, но производная не существует, —критическими.
Производная существует всюду в области определения функции, значит, критических точек у функции нет. Стационарные точки найдем из соотношения f′(x)=0:
3x2+24x−27=0|÷3x2+8x−9=0D4=(b2)2−ac=822+9=25x1,2=−b2±D4−−√a=−82±25−−√1=−82±5x1=−82−5=−9x2=−82+5=1
Критические и стационарные точки делят реальную числовую прямую на интервалы с неизменным знаком производной. Чтобы определить знак производной, достаточно вычислить значение производной функции в какой-либо точке соответственного интервала.
Если производная функции в критической (стационарной) точке:
1) меняет знак с отрицательного на положительный, то это точка минимума;
2) меняет знак с положительного на отрицательный, то это точка максимума;
3) не меняет знак, то в этой точке нет экстремума.
Итак, определим точки экстремума:
При x<−9 имеем положительную производную (на этом промежутке функция возрастает); при −9<x<1 имеем отрицательную производную (на этом промежутке функция убывает). Значит, x=−9 — точка максимума функции. При −9<x<1 имеем отрицательную производную, при
Объяснение:
x+x+4x=96
x=16
основание 64
стороны 16