ответ: ниа.
объяснение:
к сожалению, не существует общего единого метода, следуя которому можно было бы решить любое уравнение, в котором участвуют тригонометрические функции. успех здесь могут обеспечить лишь хорошие знания формул и умение видеть те или иные полезные комбинации, что вырабатывается лишь практикой.
общая цель обычно состоит в преобразовании входящего в уравнение тригонометрического выражения к такому виду, чтобы корни находились из так называемых простейших уравнений:
сos px = a; sin gx = b; tg kx = c; ctg tx = d.
2)Аналитически
По-моему мнению, решая неравенства, самый рациональный через тригонометрический круг. Но мы разберем сразу 2 варианта.
№1. Тригонометрический круг
Как мы помним, на круге отсчитываем синус по игреку. Ищем значение 1/2, и проводим хорду так, чтобы она проходила через точку 1/2 (по игреку, напомню еще раз). То, что ниже этой хорды и будут решениями неравенства. Нетрудно сообразить, что sin30 градусов даст 1/2. Но и sin150 градусов даст 1/2. Таким образом, отсюда вытекает двойное неравенство:
150<sinx<30
P.S. Все, что я обвел желтым - это решение данного неравенства (рис. 1)
№2. Аналитический
Рассмотрим уравнение:
Решая уравнение, получим:
Чтобы неравенство было верным, нужно, чтобы угол альфа был меньше, или равен корням уравнения sinx=1/2.
Опять же, отсюда вытекает двойное неравенство:
150<sinx<30