1) sin^2α+ sin^2β + cos(α + β)*cos(α - β) = sin^2α + sin^2β + cos^2α - sin^2β = sin^2α + cos^2α = 1.
2) cos^2(45°-α)-cos^2(60°+α)- cos75° * sin(75°-2α) =
(cos (45°-α)-cos (60°+α))*((cos (45°-α)+cos (60°+α))-cos(90-15)°*sin(90-(15+2α) =
[-2*sin( 105/2)*sin((-15-2α)/2)]*[2*cos( 105/2)*cos((15+2α)/2)]-sin15*cos(15+2α )=
[ 2*sin( 105/2)*sin(( 15+2α)/2)]*[2*cos( 105/2)*cos((15+2α)/2)]-sin15*cos(15+2α )=
[ 2*sin( 105/2)*cos( 105/2)]*[2*sin(( 15+2α)/2)*cos((15+2α)/2)]-sin15*cos(15+2α) =
sin(2*(105/2))*sin(15+2α)-sin15*cos(15+2α)=sin105*sin(15+2α)-sin15*cos(15+2α )=
sin(90+15)*sin(15+2α)-sin15*cos(15+2α)= cos15*sin(15+2α)-sin15*cos(15+2α)=
sin((15+2α)-15)=sin2α
x² + 4x + 4 = 4x + 16
x² + 4x - 4x = 16 - 4
x² = 12
x = √12
x = - √12
2) 4( x - 1)² = ( x+ 2)²
4( x² - 2x + 1) = x² + 4x + 4
4x² - 8x + 4 - x² - 4x - 4 = 0
3x² - 12x = 0
3x( x - 4) = 0
Произведение равно 0,когда один из множителей равен 0,значит,
3x = 0
x = 0
x - 4 = 0
x = 4
3) ( 3x - 1)² = 3( 1 - 2x)
9x² - 6x + 1 = 3 - 6x
9x² - 6x + 6x = 3 - 1
9x² = 2
9x² - 2 = 0
D = b² - 4ac = 0 - 4×9×(-2) = 72
x1 = ( 0 + √72) / 18 = √9×8 / 18 = 3√8 / 18 = √8 / 6 = 2√2 / 6 = √2 / 3
x2 = - √2 / 3
ответ: +/ - √2 / 3.
4) ( x + 3)² = 3( x + 1)
x² + 6x + 9 = 3x + 3
x² + 6x - 3x + 9 - 3 = 0
x² + 3x + 6 = 0
D= b² - 4ac = 9 - 4×6 = 9 - 24 = - 15 - дискриминант отрицательный,значит,корней нет.
ответ: корней нет.