М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
45Эвлария
45Эвлария
18.10.2020 04:59 •  Алгебра

Составьте квадратное уравнение ,если его корни x1=9 ,x2=-5
!

👇
Ответ:
228dflbr
228dflbr
18.10.2020

Уравнение запишем в виде x² + px + q = 0

сумма корней равна второму коэффициенту с противоположным знаком, то есть -р

х1 + х2 = -p

-р=9+(-5)

-р=4

р= -4

произведение корней равно свободному члену, то есть q

q = 9* (-5)= -45

уравнение получается такое x²-4х-45=0

4,6(92 оценок)
Открыть все ответы
Ответ:
Akimneznaet123
Akimneznaet123
18.10.2020

ответ: 931

Объяснение:

1. Заметим, что 315 имеет следующее разложение на простые множители:

315=32⋅5⋅7,

отсюда следует, что числа x, y, z состоят из тех же простых чисел 3, 5, 7:

 x=3a1⋅5a2⋅7a3;

 y=3b1⋅5b2⋅7b3;

 z=3c1⋅5c2⋅7c3.

При этом  

 0≤a1,b1,c1≤2;

 0≤a2,b2,c2≤1;

 0≤a3,b3,c3≤1.

 2. По правилу нахождения наименьшего общего кратного получим

НОК(3a1⋅5a2⋅7a3;3b1⋅5b2⋅7b3;3c1⋅5c2⋅7c3)=3max(a1,b1,c1)⋅5max(a2,b2,c2)⋅7max(a3,b3,c3).

 3. Итак, задача свелась к нахождению числа решений системы уравнений:

 

⎧⎩⎨⎪⎪max(a1,b1,c1)=2;max(a2,b2,c2)=1;max(a3,b3,c3)=1.

Так как каждое уравнение содержит разные неизвестные, то для того чтобы найти количество решений системы, нужно найти количество решений каждого из уравнений и перемножить полученные значения.

 4.  Начнём с первого уравнения. Требуется найти количество целых неотрицательных чисел a1,b1,c1, удовлетворяющих уравнению max(a1,b1,c1)=2.

 Напомним, что 0≤a1,b1,c1≤2. Отсюда следует, что тройка чисел a1,b1,c1 является решением уравнения, если хотя бы одно из чисел a1,b1,c1 равно 2. Для того чтобы посчитать число таких троек, вычтем из количества всевозможных троек чисел a1,b1,c1 с условием 0≤a1,b1,c1≤2 (таких троек ровно 33=27 штук) число троек a1,b1,c1 с условием 0≤a1,b1,c1≤2, в которых 2 ни разу не встречается (таких троек ровно 23=8 штук). Отсюда находим, что первое уравнение системы имеет 27−8=19 решений.

5. Точно так же поступим при подсчёте числа решений второго уравнения системы. Требуется найти количество целых неотрицательных чисел a2,b2,c2, удовлетворяющих уравнению max(a2,b2,c3)=1.

Напомним, что  0≤a2,b2,c2≤1.

Тройка чисел a2,b2,c2 является решением уравнения, если хотя бы одно из чисел  a2,b2,c2 равно 1. Но только одна тройка чисел a2,b2,c2 не удовлетворяет этому условию, это тройка a2=b2=c3=0. Все остальные тройки хотя бы одну 1 содержат. Поскольку троек чисел a2,b2,c2 с условием 0≤a2,b2,c2≤1 ровно 23=8 штук, то второе уравнение системы имеет 8−1=7 решений. Точно так же получаем, что и третье уравнение системы имеет 7 решений.

 6. Для того чтобы подсчитать число решений системы, а значит, и исходного уравнения, остаётся перемножить полученные нами числа. Имеем

 19⋅7⋅7=931.

Итак, исходное уравнение имеет ровно 931 решение.

 Правильный ответ: 931 решение.

4,7(24 оценок)
Ответ:
neoguy228
neoguy228
18.10.2020

ответ: 453600

Объяснение:

1. Раскрасим основание A1A2...A8 в один из 10 цветов. Такую раскраску можно осуществить

2. Раскрасим теперь по очереди боковые грани пирамиды. Для первой грани SA1A2 имеется 10−1=9 вариантов раскраски, для второй грани SA2A3 имеется 10−2=8 вариантов раскраски, и так далее, для 8-й по порядку грани имеется 10−8=2 вариант(-ов, -a) раскраски. Таким образом, всего получаем

M=10(10−1)(10−2)...(10−8)

вариантов раскраски пирамиды.

3. По условию задачи две раскраски считаются одинаковыми, если получаются друг из друга движением. В нашем случае, у пирамиды существует ровно 8 движений (8 поворотов). Потому искомое число раскрасок будет в 8 раз меньше величины M.

Получаем ответ:

10(10−1)(10−2)...(10−8)8=453600.

4,4(50 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ