![\left(\dfrac{1}{4};\;\dfrac{1}{3}\right]](/tpl/images/1360/4170/bfd50.png)
Объяснение:
Рассмотрим сначала первое неравенство системы.
Начнем с ОДЗ:

Продолжим решение:

1)

Замена:
.

Обратная замена:

С учетом ОДЗ оба корня подходят.
2)

С учетом ОДЗ получим, что решение неравенства:
![x\in\left(\dfrac{1}{27};\;\dfrac{1}{3}\right]\cup[9;\;+\infty)](/tpl/images/1360/4170/0c6fd.png)
Теперь перейдем ко второму неравенству системы:
Понятно, что сначала нужно написать ОДЗ.

Продолжим решение:
![36^x+36\sqrt[4]{6}-6^{x+\frac{1}{4}}](/tpl/images/1360/4170/40301.png)
Заметим, что данное неравенство хорошо раскладывается на множители:
![36^x+36\sqrt[4]{6}-6^{x+\frac{1}{4}}](/tpl/images/1360/4170/de2d2.png)
Решим неравенство по методу интервалов.
1)
![\sqrt[4]{6}-6^x=0\\6^x=6^{\frac{1}{4}}\\x=\dfrac{1}{4}](/tpl/images/1360/4170/8f389.png)
2)

Введем функции
и
. Заметим, что первая функция возрастает, а вторая убывает. Поэтому, если уравнение имеет корень, он единственный. Теперь заметим, что x=2 - корень уравнения. Действительно,
, верно. Так, мы решили это уравнение, получив, что его корень x=2.
Тогда решение неравенства с учетом ОДЗ:

Итого имеем:
![x\in\left(\dfrac{1}{27};\;\dfrac{1}{3}\right]\cup[9;\;+\infty)\\x\in\left(\dfrac{1}{4};\;2\right)](/tpl/images/1360/4170/0ebfe.png)
Найдем пересечение:
![x\in\left(\dfrac{1}{4};\;\dfrac{1}{3}\right]](/tpl/images/1360/4170/792e3.png)
Задание выполнено!
Можно сделать графически.
Левая часть: y = -0,5x⁴
График - квадратичная парабола, ветви направлены вниз.
Правая часть: y = x - 4
График - прямая линия, не параллельная осям координат. Пересекает параболу в двух точках.
ответ: уравнение имеет 2 действительных корня.
2) y=(x-2)^2+4 на отрезке [0;3]
Квадратичная функция, ветви направлены вверх. Наименьшим значением будет вершина параболы.
Координаты вершины параболы: х=2 (из уравнения функции), у = 4.
Подставить границы интервала в уравнение функции и выбрать наибольшее:
y = (x - 2)² + 4 = (0 - 2)² + 4 = 8
y = (x - 2)² + 4 = (3 - 2)² + 4 = 5
Наибольшее значение функции на отрезке [0; 3] y = 8 в точке x = 3.
Наименьшее значение функции на отрезке [0; 3] y = 4 в точке x = 2.