1) а) 26х² - 30х + 9 б) 4р²+4с²- 4рс
2) а) 2а²+16 б) 2х²-х+9
3) а) 3х²+6ху+3у² б) 4с³-4с²+с
Объяснение:
Многочлен - это алгебраическая сумма одночленов.
1) а) х²+(5х-3)² = х²+(5х)² - 2·5х·3 + 3² = х²+25х² - 30х + 9 = 26х² - 30х + 9
б) (р-2с)²+3р² = р² -4рс +4с²+3р² = 4р²+4с²- 4рс
2) а) (а-4)² + a(а+8) = а²-8а+16+а²+8а = 2а²+16
б) х(х-7) + (х+3)² = х²-7х+х²+6х+9=2х²-х+9
3) а) 3(х+у)² = 3(х²+2ху+у²) = 3х²+6ху+3у²
б) с(2с-1)² = с(4с²-4с+1) = 4с³-4с²+с
ответы:
1) а) 26х² - 30х + 9 б) 4р²+4с²- 4рс
2) а) 2а²+16 б) 2х²-х+9
3) а) 3х²+6ху+3у² б) 4с³-4с²+с
1. BA=CD
A=C
BD-общая
Треугольник BCD= треугольнику BDA (по признаку равенства прямоугольных треугольников)(по катету и гипотенузе)
2. МТ=ТN
TKN=TKM(т.к. КТ-биссектриса)
Треугольник KTM=треугольнику TKN(по признаку равенства прямоугольных треугольников)(по катету и острому углу)
3. PK=KR
P=R
SKP=SKR
Т.к. углы при основании равны, то это равнобедренный треугольник.
Т.к. угол SKP=углу SKR, то KS-биссектриса
Т.к. это равнобедренный треугольник, то биссектриса в нем является и медианой, а следовательно, соединяет вершину с серединой PR, тогда PK=KR
(по второму признаку равенства треугольников)
4.REF=FES
EF-общая
Треугольник RFE=треугольнику FES(по признаку равенства прямоугольных треугольников)(по гипотенузе и острому углу)
7. RT=TS
Угол MTR=углу NTS
Т.к. угол R=углу S, то треугольник TRS равнобедренный, следовательно, RT=TS
Угол MTR=углу NTS, как вертикальные
Треугольник MTR=треугольнику NTS(по признаку равенства прямоугольных треугольников)(по гипотенузе и острому углу)
8. Абсолютно такой же треугольник, как и в предыдущем