М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Элеонора335564
Элеонора335564
09.01.2022 09:21 •  Алгебра

Определить тип уравнения. найти общее решение или решение удовлетворяющее заданным начальным условиям.

1)y(штрих)+2xy=2xy^{3}
2)(1+x^{2})у(2 штриха)-2xy(штрих)=0,y(0)=0,y(штрих)(0)=3.

👇
Ответ:
matveiarzhanoff
matveiarzhanoff
09.01.2022

1) - уравнение с разделяющимися переменными. 2)- ДУ 2 порядка, допускающее понижение порядка.

1)\; \; y'+2xy=2xy^3\\\\y'=2x\cdot (y^3-y)\; \; \qquad \Big [\; y'=f(x)\cdot g(y)\; \Big ]\\\\\frac{dy}{dx}=2x\cdot (y^3-y)\\\\\int \frac{dy}{y\, (y-1)(y+1)}=\int 2x\, dx\\\\\star \; \; \int \frac{dy}{y\, (y-1)(y+1)}=-\int \frac{dy}{y}+\frac{1}{2}\int \frac{dy}{y-1}-\frac{1}{2}\int \frac{dy}{y+1}=\\\\=-ln|y|+\frac{1}{2}\, ln|y-1|-\frac{1}{2}\; ln|y+1|+C=C+ln|\frac{1}{y}|+\frac{1}{2}\, ln\Big |\frac{y-1}{y+1}\Big |=\\\\=C+ln\Big |\frac{1}{y}\Big |+ln\sqrt{\frac{y-1}{y+1}}\; \; \star

ln\Big |\frac{1}{y}\Big |+ln\sqrt{\frac{y-1}{y+1}}=x^2+C_1

2)\; \; (1+x^2)\, y''-2xy'=0\; \; ,\; \; y(0)=0\; ,\; y'(0)=3\\\\y''-\frac{2x}{1+x^2}\cdot y'=0\\\\y'=p(x)\; ,\; \; y''=p''(x)\; \; ,\; \; p'-\frac{2x}{1+x^2}\cdot p=0\; ,\; \; p'=\frac{2x}{1+x^2}\cdot p\; ,\\\\\frac{dp}{dx}=\frac{2x}{1+x^2} \; \; ,\; \; \int dp=\int \frac{2x\, dx}{1+x^2}\; ,\\\\p=ln|1+x^2|+C_1\; \; ,\; \; y'=ln(1+x^2)+C_1\; ,\; \; \frac{dy}{dx}=ln(1+x^2)+C_1\\\\\int dy=\int ln(1+x^2)\, dx+\int C_1\, dx\\\\y=C_1x+\int ln(1+x^2)\, dx

\star \; \int ln(1+x^2)\, dx=\Big [\; u=ln(1+x^2)\; ,\; du=\frac{2x\, dx}{1+x^2}\; ,\; dv=dx\; ,\; v=x\; \Big ]=\\\\=x\cdot ln(1+x^2)-2\int \frac{x^2\, dx}{1+x^2}=x\cdot ln(1+x^2)-2\int (1-\frac{1}{1+x^2})\, dx=\\\\=x\cdot ln(1+x^2)-2x+2arctgx+C\; \; \star \\\\y=C_1x+x\cdot ln(1+x^2)-2x+2arctgx+C_2\\\\y(0)=0:\; \; 0=C_2\\y'(0)=3:\; \; 3=ln1+C_1\; \; ,\; \; C_1=3\\\\y_{chastn.resh.}=3x+x\cdot ln(1+x^2)-2x+2arctgx

4,5(59 оценок)
Открыть все ответы
Ответ:
K1rysha
K1rysha
09.01.2022

1. y= (1/x) + 34

2.(не уверен, но вроде) y=∛(1-х^3 )

3. да

Объяснение:

1. как делается обратная функция: мы выражаем х через у, а потом в получившейся формуле меняем х на у

х-34=1/у

х=(1/у)+34

у=(1/х)+34

2. у^3=1-х^3

х^3=1-у^3

у=∛(1-х^3 )

3. что мы сделаем: мы возьмём произвольные х1 и х2, такие что х1>х2

и приведем к виду функции, если окажется, что выражение с х1 остается большим значит функция увеличивается, нет - наоборот.(не уверен в

х1>х2

-7х1<-7х2

10-7х1<10-7х2

выражение с х2 больше значит функция уменьшается, ответ да.

4,6(25 оценок)
Ответ:
mrtopgame
mrtopgame
09.01.2022

1. y= (1/x) + 34

2.(не уверен, но вроде) y=∛(1-х^3 )

3. да

Объяснение:

1. как делается обратная функция: мы выражаем х через у, а потом в получившейся формуле меняем х на у

х-34=1/у

х=(1/у)+34

у=(1/х)+34

2. у^3=1-х^3

х^3=1-у^3

у=∛(1-х^3 )

3. что мы сделаем: мы возьмём произвольные х1 и х2, такие что х1>х2

и приведем к виду функции, если окажется, что выражение с х1 остается большим значит функция увеличивается, нет - наоборот.(не уверен в

х1>х2

-7х1<-7х2

10-7х1<10-7х2

выражение с х2 больше значит функция уменьшается, ответ да.

4,5(4 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ