Объяснение:
Составьте квадрат суммы двух одночленов.ответ запишите в виде степени и в виде многочлена.(2x + 5)² = 4x² + 20x + 25
(x + 3)² = x² + 6x + 9
(6a + 7b)² = 36a² + 84ab + 49b²
(2k + 3)² = 4k² + 12k + 9
Пользуясь формулой квадрата суммы,вычислите значение выражения:10,2² = (10+0,2)² = 100 + 4 + 0,04 = 104,04
104²=(100+4)² = 10000 + 800 + 16 = 10816
32² = (30 + 2)² = 900 + 120 + 4 = 1024
51² = (50 + 1)² = 2500 + 100 + 1 = 2601
ПРИМЕЧАНИЕ:все числа во второй степени.
Представьте многочлен в виде квадрата суммы:4a²+4ab+b² = (2a + b)²
k²+2kb+b² = (k + b)²
1+2m+m² = (1 + m)²
1/4+p+p² = (1/2 + p)²
ПРИМЕЧАНИЕ:4a,b k,b m p во второй степени
1501 градус = 360*4 + 61 - 1 четверть. sin a, cos a, tg a, ctg a > 0
2) sin a = -13/14, a ∈ 3 четверти. cos a < 0
cos a = -√(1 - 169/196) = -√(27/196) = -3√3/14
tg a = sin a / cos a = (-13/14) : (-3√3/14) = 13/(3√3) = 13√3/9
a) (sin^2 a + tg^2 a + cos^2 a)*cos^2 a + tg a*ctg a =
= (1 + tg^2 a)*cos^2 a + 1 = 1/cos^2 a * cos^2 a + 1 = 1 + 1 = 2
b)
Как это сократить, чтобы получить нормальный ответ, я не знаю.
Думаю, что где-то ошибка. Или у меня, или в задании.